纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 86-94.doi: 10.13475/j.fzxb.20220406301
史伟民1, 简强1, 李建强2(), 汝欣1, 彭来湖1,2
SHI Weimin1, JIAN Qiang1, LI Jianqiang2(), RU Xin1, PENG Laihu1,2
摘要:
为解决提花针织物的复杂纹理在疵点检测过程中易造成检测干扰和疵点误判的问题,提出一种基于非线性扩散和多特征融合的疵点检测方法。采用改进PM模型对提花针织物的花纹和强纹理边缘进行抑制,首先利用梯度差异将疵点图像分为纹理区域及疵点区域,然后结合各区域特点选择对应的扩散方程,依据梯度矩阵计算概率子集、相关准则来确定梯度阈值,实现分区域扩散。根据提花针织物的纹理分布特性,提取改进局部二值算法(LBP)、局部熵、局部相关性等表征参数,然后进行去邻域归一化和多特征融合进一步突出疵点区域,最后利用区域生长法定位分割出疵点形态。实验验证了本文预处理方法及疵点检测方法的有效性,通过与其它预处理算法和疵点检测算法进行对比,结果表明本文算法的检测效果最好,对正常织物图像的误检率为3.3%,对含疵点织物图像检测的准确率为98.6%。
中图分类号:
[1] |
SELVI S S T, NASIRA G M. An effective automatic fabric defect detection system using digital image processing[J]. J Environ Nanotechnol, 2017, 6(1): 79-85.
doi: 10.13074/jent |
[2] |
NILESH T D, TANUJA K S. Fabric defect detection adopting combined GLCM, Gabor wavelet features and random decision forest[J]. 3D Research, 2019, 10(1): 1-13.
doi: 10.1007/s13319-018-0210-y |
[3] | CAO J J, ZHANG J, WEN Z, et al. Fabric defect inspection using prior knowledge guided least squares regression[J]. Multimedia Tools & Applications, 2017, 76(3): 4141-4157. |
[4] | TAJERIPOUR F, KABIR E, SHEIKHI A. Defect detection in patterned fabrics using modified local binary patterns[C]// International Conference on Conference on Computational Intelligence & Multimedia Applications. Sivakasi: IEEE, 2008: 261-267. |
[5] | BODNAROVA A, BENNAMOUN M, LATHAM S. Optimal Gabor filters for textile flaw detection[J]. Pattern Recognition, 2002(35): 2973-2991. |
[6] | 尉苗苗, 李岳阳, 蒋高明, 等. 应用最优Gabor滤波器的经编织物疵点检测[J]. 纺织学报, 2016, 37(11):48-54. |
YU Miaomiao, LI Yueyang, JIANG Gaoming, et al. Warp knit fabric defect detection method based on optimal Gabor filter[J]. Journal of Textile Research, 2016, 37(11):48-54. | |
[7] |
JING Junfeng, ZHANG Huanhuan, WANG Jing, et al. Fabric defect detection using Gabor filters and defect classification based on LBP and Tamura method[J]. Journal of The Textile Institute, 2013, 104(1): 18-27.
doi: 10.1080/00405000.2012.692940 |
[8] | 赵志勇. 基于深度学习的布匹缺陷识别与检测研究[D]. 武汉: 华中科技大学, 2019: 69. |
ZHAO Zhiyong. Research on recognition and detection of textile defects based on deep learning[D]. Wuhan: Huazhong University of Science & Technology, 2019: 69. | |
[9] |
王理顺, 钟勇. 基于深度学习的织物缺陷在线检测算法[J]. 计算机应用, 2019, 39(7): 2125-2128.
doi: 10.11772/j.issn.1001-9081.2019010110 |
WANG Lishun, ZHONG Yong. On-line fabric defect recognition algorithm based on deep learning[J]. Journal of Computer Applications, 2019, 39(7): 2125-2128.
doi: 10.11772/j.issn.1001-9081.2019010110 |
|
[10] |
HU Guanghua, HUANG Junfeng, WANG Qinghui, et al. Unsupervised fabric defect detection based on a deep convolutional generative adversarial network[J]. Textile Research Journal, 2019, 90(3/4): 247-270.
doi: 10.1177/0040517519862880 |
[11] | PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 29-39. |
[12] | 宋新, 杨明琴, 张莉. 基于PM模型扩散系数改进的加速算法[J]. 网络安全技术与应用, 2016(4): 52-54. |
SONG Xin, YANG Mingqin, ZHANG Li. Improved acceleration algorithm based on diffusion coefficient of PM model[J]. Network Security Technology & Application, 2016(4): 52-54. | |
[13] | 蒋成龙, 赵曜, 张柘. 基于相关准则的稀疏微波成像方位向采样优化方法[J]. 电子与信息学报, 2015, 37(3): 580-586. |
JIANG Chenglong, ZHAO Zhuo, ZHANG Tuo. Azimuth sampling optimization method for sparse microwave imaging based on correlation criterion[J]. Journal of Electronics & Information Technology, 2015, 37(3): 580-586. | |
[14] |
OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
doi: 10.1109/TPAMI.2002.1017623 |
[15] |
OJALA T, PIETIKAINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59.
doi: 10.1016/0031-3203(95)00067-4 |
[16] | 吴哲, 刘孝星, 郑力新, 等. 基于灰度共生矩阵特征图像的织物疵点检测方法[J]. 网络安全与数据治理, 2015, 34(21): 47-50. |
WU Zhe, LIU Xiaoxing, ZHENG Lixin, et al. A fabric defect detection method based on gray level co-ocurrence matrix feature image[J]. Cyber security and Data Governance, 2015, 34 (21): 47-50. | |
[17] | 李凡. 复杂背景抑制及弱小目标检测算法研究[D]. 西安: 西安电子科技大学, 2010: 26-28. |
LI Fan. A study of algorithms for complex background suppression and small target detection[D]. Xi'an: Xidian University, 2010: 26-28. | |
[18] | 史小雨. 基于结构相似度的遥感图像质量评价[D]. 西安: 西安科技大学, 2017: 21-25. |
SHI Xiaoyu. Quality assessment of remote sensing image based on structural similarity[D]. Xi'an: Xi'an University of Science and Technology, 2017: 21-25. | |
[19] |
FENG Xiangfei, GUO Xiaoyu, HUANG Qinghua. Systematic evaluation on speckle suppression methods in examination of ultrasound breast images[J]. Applied Sciences, 2017.DOI:10.3390/app7010037.
doi: 10.3390/app7010037 |
[20] | MATHIYALAGAN P, SUVITHA N. Image fusion using convolutional neural network with bilateral filtering[C]// International Conference on Computing, Communication and Networking Technologies. Bengaluru: IEEE, 2018: 1-11. |
[1] | 邢文宇, 邓娜, 辛斌杰, 于晨. 基于多特征融合图像分析技术的羊毛与羊绒鉴别[J]. 纺织学报, 2019, 40(03): 146-152. |
|