纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 1-10.doi: 10.13475/j.fzxb.20220408901
• 纤维材料 • 下一篇
杨其亮1,2, 杨海伟1,2(), 王邓峰3, 李长龙1,2, 张乐乐1, 王宗乾1,2
YANG Qiliang1,2, YANG Haiwei1,2(), WANG Dengfeng3, LI Changlong1,2, ZHANG Lele1, WANG Zongqian1,2
摘要:
为提升丝素蛋白(SF)气凝胶力学弹性,以SF微-纳米纤维(SMNF)为前驱体,通过冷冻干燥和硅烷改性策略成功构筑了超疏水高弹性SMNF气凝胶(简称MS气凝胶),并对其微观结构和力学性能进行测试表征,系统研究了MS气凝胶的吸油性能。结果表明:MS气凝胶的网络骨架由微-纳米纤维组装而成,并具有分级多孔的胞腔结构,这赋予气凝胶超低的密度(5.36 mg/cm3)和超高的孔隙率(99.63%);此外,MS气凝胶还表现出优异的力学性能,在80%纵向压缩应变下的最大应力为15.72 kPa,100次循环压缩后气凝胶保留了81%以上的初始相对高度。能量色散光谱和红外光谱分析证实:硅烷改性后气凝胶的表面形成了硅氧烷网络结构,使其具有超疏水特征(水接触角为150.9°);MS气凝胶对氯仿的吸收能力为188.75 g/g,并具有优良的循环使用性能。
中图分类号:
[1] | ZHANG X, LEI Y, LI C, et al. Superhydrophobic and multifunctional aerogel enabled by bioinspired salvinia leaf-like structure[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202110830. |
[2] |
LI M, LIU H, LIU J, et al. Hydrophobic and self-recoverable cellulose nanofibrils/N-alkylated chitosan/poly (vinyl alcohol) sponge for selective and versatile oil/water separation[J]. International Journal of Biological Macromolecules, 2021, 192: 169-179.
doi: 10.1016/j.ijbiomac.2021.09.189 |
[3] | 王邓峰, 王宗乾, 范祥雨, 等. 天然中空异形萝藦种毛纤维的吸油性能[J]. 纺织学报, 2020, 41 (4): 26-32. |
WANG Dengfeng, WANG Zongqian, FAN Xiangyu, et al. Study on oil absorbency of nature hollow metaplexis japonica seed hair fibers[J]. Journal of Textile Research, 2020, 41(4): 26-32. | |
[4] |
JIANG F, HSIEH Y L. Dual wet and dry resilient cellulose II fibrous aerogel for hydrocarbon-water separation and energy storage applications[J]. ACS Omega, 2018, 3 (3): 3530-3539.
doi: 10.1021/acsomega.8b00144 pmid: 31458604 |
[5] |
JING F, HSIEH Y L. Amphiphilic superabsorbent cellulose nanofibril aerogels[J]. Journal of Materials Chemistry A, 2014, 2(18): 6337-6342.
doi: 10.1039/C4TA00743C |
[6] |
SUN H, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25 (18): 2554-2560.
doi: 10.1002/adma.v25.18 |
[7] |
ZHANG S, TIAN L, CHEN X, et al. Ultralight graphene/carbon nanofibers/carbon nanotubes aerogels with thermal insulating and hot-oil adsorption performance[J]. Journal of Materials Science, 2021, 56 (12): 7409-7419.
doi: 10.1007/s10853-021-05772-x |
[8] | CAI C, WEI Z, HUANG Y, et al. Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.127772. |
[9] | QIN H, ZHANG Y, JIANG J, et al. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202106269. |
[10] |
JIAO Y, WAN C, QIANG T, et al. Synthesis of superhydrophobic ultralight aerogels from nanofibrillated cellulose isolated from natural reed for high-performance adsorbents[J]. Applied Physics A, 2016, 122(7): 1-10.
doi: 10.1007/s00339-015-9525-1 |
[11] |
XIE X, ZHENG Z, WANG X, et al. Low-density silk nanofibrous aerogels: fabrication and applications in air filtration and oil/water purification[J]. ACS Nano, 2021, 15(1): 1048-1058.
doi: 10.1021/acsnano.0c07896 pmid: 33439624 |
[12] |
WANG Q, LING S, YAO Q, et al. Observations of 3 nm silk nanofibrils exfoliated from natural silkworm silk fibers[J]. ACS Materials Letters, 2020, 2(2): 153-160.
doi: 10.1021/acsmaterialslett.9b00461 |
[13] | LI C, WU J, SHI H, et al. Fiber-based biopolymer processing as a route toward sustainability[J]. Advanced Materials, 2022. DOI: 10.1002/adma.202105196. |
[14] |
JIN H J, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003, 424(6952): 1057-1061.
doi: 10.1038/nature01809 |
[15] |
MALEKI H, WHITMORE L, HÜSING N. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications[J]. Journal of Materials Chemistry A, 2018, 6 (26): 12598-12612.
doi: 10.1039/c8ta02821d pmid: 30713688 |
[16] | 王宗乾, 杨海伟, 周剑, 等. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41 (4): 9-14. |
WANG Zongqian, YANG Haiwei, ZHOU Jian, et al. Effect of urea degumming on mechanical properties of silk fibroin aerogels[J]. Journal of Textile Research, 2020, 41 (4): 9-14. | |
[17] | SHOME A, MOSES J C, RATHER A M, et al. Unconventional and facile fabrication of chemically reactive silk fibroin sponges for environmental remediation[J]. ACS Applied Materials & Interfaces, 2021, 13 (20): 24258-24271. |
[18] | ZHOU J, ZHANG Y, YANG Y, et al. Silk fibroin-graphene oxide functionalized melamine sponge for efficient oil absorption and oil/water separation[J]. Applied Surface Science, 2019. DOI: 10.1016/j.apsusc.2019.143762. |
[19] | 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39 (4): 69-76. |
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J] Journal of Textile Research, 2018, 39 (4): 69-76. | |
[20] | WANG Z, YANG H, LI Y, et al. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating tex-tiles[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15726-15736. |
[21] | MENG Y, SONG F, CHEN H, et al. Composited gels from nature growing scaffold: synthesis, properties, and application[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5498-5507. |
[22] |
TAN X, ZHAO W, MU T. Controllable exfoliation of natural silk fibers into nanofibrils by protein denaturant deep eutectic solvent: nanofibrous strategy for multifunctional membranes[J]. Green Chemistry, 2018, 20(15): 3625-3633.
doi: 10.1039/C8GC01609G |
[23] |
HU Z, YAN S, LI X, et al. Natural silk nanofibril aerogels with distinctive filtration capacity and heat-retention performance[J]. ACS Nano, 2021, 15(5): 8171-8183.
doi: 10.1021/acsnano.1c00346 pmid: 33848124 |
[24] | LI L, YANG H, LI X, et al. Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites[J]. Carbohydrate Polymers, 2021. DOI: 10.1016/j.carbpol.2020.117214. |
[25] | YANG H, WANG Z, WANG M, et al. Structure and properties of silk fibroin aerogels prepared by non-alkali degumming process[J]. Polymers, 2020. DOI:10.1016/j.polymer.2020.122298. |
[26] | ZHANG C, ZHANG Y, SHAO H, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3349-3358. |
[27] |
CAO L, SI Y, WU Y, et al. Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption[J]. Nanoscale, 2019, 11(5): 2289-2298.
doi: 10.1039/c8nr09288e pmid: 30657513 |
[28] | ZHONG J, LIU Y, REN J, et al. Understanding secondary structures of silk materials via micro- and nano-infrared spectroscopies[J]. ACS Biomaterials Science & Engineering, 2019, 5 (7): 3161-3183. |
[29] | GONG X, WANG Y, ZENG H, et al. Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly (vinyl alcohol) aerogels as recyclable absorbents for oil-water separation[J]. ACS Sustainable Chemi-stry & Engineering, 2019, 7 (13): 11118-11128. |
[30] | DONG X, CAO L, SI Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201908269. |
[31] |
CHEN Y, YU Z, YE Y, et al. Superelastic, hygroscopic, and ionic conducting cellulose nanofibril monoliths by 3D printing[J]. ACS Nano, 2021, 15(1): 1869-1879.
doi: 10.1021/acsnano.0c10577 pmid: 33448788 |
[32] | BANDAR Abadi M, WEISSING R, WILHELM M, et al. Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2021, 13 (29): 34996-35007. |
[33] | MULYADI A, ZHANG Z, DENG Y. Fluorine-free oil absorbents made from cellulose nanofibril aerogels[J]. ACS Applied Materials & Interfaces, 2016, 8 (4): 2732-2740. |
[34] | DONG T, TIAN N, XU B, et al. Biomass poplar catkin fiber-based superhydrophobic aerogel with tubular-lamellar interweaved neurons-like structure[J]. Journal of Hazardous Materials, 2022. DOI: 10.1016/j.jhazmat.2022.128290. |
[35] | 尚倩倩, 胡云, 刘承果, 等. 超疏水纤维素复合气凝胶的制备及其油水分离[J]. 林产业工程学报, 2019, 4 (3): 86-92. |
SHANG Qianqian, HU Yun, LIU Chengguo, et al. Fabrication of superhydrophobic cellulose composite aerogels for oil /water separation[J]. Journal of Forestry Engineering, 2019, 4 (3): 86-92. |
[1] | 张颖, 宋明根, 姬洪, 陈康, 张先明. 热定形工艺对高强型聚酯工业丝结构性能的影响[J]. 纺织学报, 2023, 44(09): 43-51. |
[2] | 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98. |
[3] | 吕红丽, 罗丽娟, 师建军, 郑振荣, 李红晨. 柔性增强二氧化硅气凝胶的研究进展[J]. 纺织学报, 2023, 44(08): 217-224. |
[4] | 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33. |
[5] | 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17. |
[6] | 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131. |
[7] | 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25. |
[8] | 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20. |
[9] | 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167. |
[10] | 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53. |
[11] | 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31. |
[12] | 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54. |
[13] | 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209. |
[14] | 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48. |
[15] | 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95. |
|