纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 12-20.doi: 10.13475/j.fzxb.20220409609

• 特约专栏:纺纱技术研究 • 上一篇    下一篇

双喂给双分梳转杯纺技术研究进展

汪军1,2(), 史倩倩1, 李玲1, 张玉泽1   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2022-04-30 修回日期:2022-06-17 出版日期:2022-08-15 发布日期:2022-08-24
  • 作者简介:汪军(1973—),男,教授,博士。主要研究方向为新型纺纱技术及纤维制品加工过程数值模拟。E-mail: junwang@dhu.edu.cn
  • 基金资助:
    上海市现代纺织前沿科学研究基地资助项目(X11012102-004)

Research progress of dual-feed-opening rotor spinning technology

WANG Jun1,2(), SHI Qianqian1, LI Ling1, ZHANG Yuze1   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2022-04-30 Revised:2022-06-17 Published:2022-08-15 Online:2022-08-24

摘要:

转杯纺纱技术具有高速高产的优势,得到了广泛的应用,但传统转杯纺因单分梳辊的配置不适合纺制纤维性能差异较大的混纺纱,而近年来双喂给双分梳(DFO)转杯纺技术的提出为这类混纺纱开发提供了可能。概述了DFO转杯纺技术的发展历程,比较了其与传统单分梳转杯纺在纺纱器气流场分布方面的异同,探讨了2路独立喂入的纤维在纱线中的混合与分布情况,指出了DFO转杯纱质量提高的原因以及DFO纱线结构的特点。此外,综述了DFO转杯纺技术在纱线产品设计和面料开发方面的进展,展望了该技术未来的发展前景,指出DFO纺纱器的完善和颜色与结构变化花式纱的开发是其研发方向。

关键词: 纺纱, 转杯纺, 纱线结构, 气流场分布, 纺纱器, 花式纱

Abstract:

Rotor spinning technology has been widely used for its advantages of high speed and high yield, but traditional rotor spinning is not suitable for making blended yarns from fibers with different fiber properties due to the configuration of single opening roller. In recent years, the dual-feed-opening (DFO) rotor spinning technology has provided a possibility for the development of such blended yarns. To this end, the development process of DFO rotor spinning technology was reviewed and summarized in this paper. The similarities and differences of the airflow field distribution in the spinning unit between DFO and the traditional rotor spinning were compared. The mixing and distribution of two independently fed fibers for making yarns was discussed. Reasons for the quality improvement of DFO rotor spun yarn and the characteristics of DFO yarn structure were pointed out. Furthermore, the progress of DFO rotor spinning technology in yarn product design and fabric development was also reviewed, and the future development prospects of this technology were prospected. It is pointed out that perfecting the DFO spinning unit and developing fancy yarns with changes in color and structure are the directions of its research and development.

Key words: spinning, rotor spinning, yarn structure, airflow filed distribution, spinning unit, fancy yarn

中图分类号: 

  • TS111.8

图1

单分梳与双分梳转杯纺对比示意图"

图2

单分梳和双分梳转杯纺纱器几何模型和网格划分示意图"

图3

单分梳和双分梳转杯纺纱器气流场速度矢量分布 注:TC代表输纤通道。"

图4

单分梳和双分梳转杯纺纱器气流场静压分布"

图5

2种转杯纱的纵向形态"

图6

2种转杯纱的横截面形态"

表1

不同混纺比的2种转杯纱性能对比"

涤纶与
粘胶
混纺比
纱线
种类
断裂强度/
(cN·tex–1)
断裂
伸长
率/%
毛羽数
(≥3 mm)/
(根·(10 m)–1)
条干
不匀
率/%
20/80 双分梳 15.4 10.0 143 12.75
单分梳 13.4 9.2 198 14.63
40/60 双分梳 16.1 10.1 145 12.43
单分梳 13.8 9.7 223 13.96
50/50 双分梳 16.5 10.8 109 12.17
单分梳 14.1 10.4 178 14.01
60/40 双分梳 15.9 9.7 121 13.01
单分梳 13.8 9.8 210 14.74
80/20 双分梳 15.5 9.7 132 12.97
单分梳 13.2 8.9 197 14.32

表2

不同线密度的2种转杯纱性能对比"

线密
度/tex
纱线
种类
断裂强度/
(cN·tex–1)
断裂
伸长
率/%
毛羽数
(≥3 mm)/
(根·(10 m)–1)
条干
不匀
率/%
30 双分梳 8.7 4.9 137 14.78
单分梳 7.3 4.7 162 16.54
35 双分梳 9.0 5.1 125 14.23
单分梳 7.4 5.0 183 15.82
40 双分梳 9.0 5.1 141 14.02
单分梳 7.8 5.5 178 15.63
45 双分梳 10.2 5.6 114 14.32
单分梳 8.7 5.5 153 16.74

图7

纤维环及分割示意图"

图8

纤维环的横截面图像"

图9

单/双分梳纤维环中各层涤纶所占比例 注:因纤维条的喂给时间难以精确控制,各纤维环所含纤维根数不能保证一致,故用纤维所占比例来表征混合效果。"

图10

不同颜色纤维双分梳混纺纱表观照片"

图11

由双分梳牛仔纱制成的牛仔面料"

[1] 高卫东. 棉纺织手册:下卷[M]. 北京: 中国纺织出版社, 2021:1530-1536.
GAO Weidong. Cotton textile manual:Volume II[M]. Beijing: China Textile & Apparel Press, 2021:1530-1536.
[2] 徐惠君. 转杯纺纱发展战略的探讨[J]. 纺织导报, 2013(7):32- 34,36-37.
XU Huijun. A discussion on the strategy for developing rotor-spinning[J]. China Textile Leader, 2013(7):32- 34, 36-37.
[3] 徐惠君, 张志, 刘延华. 转杯纺纱机的高速化、智能化及自动化发展[J]. 纺织导报, 2014(1):37-43.
XU Huijun, ZHANG Zhi, LIU Yanhua. Development of rotor spinning machinery: high-speed,intelligent and automatic[J]. China Textile Leader, 2014(1):37-43.
[4] 陈顺明, 泮志连, 程四新, 等. 关于转杯纺创新开发新型纱线的调查分析[J]. 纺织导报, 2021(1):58-62.
CHEN Shunming, PAN Zhilian, CHENG Sixin, et al. Investigation and analysis of the innovative development of rotor-spinning yarns[J]. China Textile Leader, 2021 (1): 58-62.
[5] 章友鹤, 朱丹萍, 赵连英, 等. 新型纺纱的技术进步及产品开发[J]. 纺织导报, 2017(1):58-61.
ZHANG Youhe, ZHU Danping, ZHAO Lianying, et al. Advancement of new spinning technologies and related product development[J]. China Textile Leader, 2017 (1): 58-61.
[6] 韩晨晨, 罗彩鸿, 高卫东. 两种新型纺纱技术的发展现状[J]. 棉纺织技术, 2021, 49(11):1-4.
HAN Chenchen, LUO Caihong, GAO Weidong. Development status of two new spinning technologies[J]. Cotton Textile Technology, 2021, 49 (11): 1-4.
[7] 林惠婷, 高备, 张玉泽, 等. 转杯纺旁路通道设计对成纱质量的影响[J]. 纺织学报, 2019, 40(2):153-158.
LIN Huiting, GAO Bei, ZHANG Yuze, et al. Effect of bypass channel on rotor-spun yarn properties in rotor spinning[J]. Journal of Textile Research, 2019, 40(2): 153-158.
[8] 史倩倩, 王姜, 张玉泽, 等. 转杯纺纱气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(2):180-184,192.
SHI Qianqian, WANG Jiang, ZHANG Yuze, et al. Numerical analysis on formation mechanism of airflow field in rotor spinning unit[J]. Journal of Textile Research, 2021, 42 (2): 180-184,192.
[9] 刘超, 杨瑞华, 薛元, 等. 凝聚槽类型对转杯内气流场影响的数值模拟[J]. 纺织学报, 2017, 38(5):128-133,138.
LIU Chao, YANG Ruihua, XUE Yuan, et al. Numerical simulation of influence of groove type on flow field inside rotor[J]. Journal of Textile Research, 2017, 38 (5): 128-133,138.
[10] HAJILARI M, EAKANDARNEIJAD S, BURKHARDT H, et al. Effect of two separate fiber feed systems in rotor spinning on yarn properties[J]. Fiber and Polymers, 2007(8): 543-549.
[11] BURKHARDT D. Feed cylinder and opening device for a spinning machine: Germany, EP 1352998A3[P]. 2003-10-15.
[12] 杨瑞华, 薛元, 郭明瑞, 等. 数码转杯纺成纱原理及其纱线特点[J]. 纺织学报, 2017, 38(11): 32-35.
YANG Ruihua, XUE Yuan, GUO Mingrui, et al. Mechanism and characteristics of digital rotor spun yarn[J]. Journal of Textile Research, 2017, 38 (11): 32-35.
[13] 杨瑞华, 徐亚亚, 韩瑞叶, 等. 多通道转杯纺混色纱的Friele配色模型[J]. 纺织学报, 2019, 40(3):44-48.
YANG Ruihua, XU Yaya, HAN Ruiye, et al. Friele color matching model of multi-channel rotor-spun mixed color yarn[J]. Journal of Textile Research, 2019, 40(3): 44-48.
[14] 邓茜茜, 杨瑞华, 徐亚亚, 等. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(7): 31-37.
DENG Xixi, YANG Ruihua, XU Yaya, et al. Study on mixing uniformity of fibers in rotor-spun mixed yarns[J]. Journal of Textile Research, 2019, 40 (7): 31-37.
[15] 张玉泽. 转杯纺双分梳技术研究[D]. 上海: 东华大学, 2014:9-18.
ZHANG Yuze. Research on the double-carding technology of rotor spinning[D]. Shanghai: Donghua University, 2014: 9-18.
[16] SHI Q Q, WANG J, ZHANG Y Z, et al. Comparison of the airflow characteristics and yarn properties between conventional and dual-feed-opening rotor spinning units[J]. Textile Research Journal, 2022, 92(5/6):660-674.
doi: 10.1177/00405175211041721
[17] 史倩倩, 高备, 林惠婷, 等. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(2):63-68.
SHI Qianqian, GAO Bei, LIN Huiting, et al. Comparative analysis of rotor spinning machines and yarn performance between conventional and dual-feed rotor spinning[J]. Journal of Textile Research, 2019, 40(2): 63-68.
[18] AKANKWASA N T, LIN H T, ZHANG Y Z, et al. Numerical simulation of three-dimensional airflow in a novel dual-feed rotor spinning box[J]. Textile Research Journal, 2018, 88(3):237-253.
doi: 10.1177/0040517516677230
[19] SHI Q Q, AKANKWASA N T, ZHANG Y Z, et al. Characterization of the airflow field in the rotor spinning unit based on a novel experimental approach and numerical simulation[J]. Textile Research Journal, 2021, 91(7/8) :717-728.
doi: 10.1177/0040517520957400
[20] 张倩. 基于双分梳技术的转杯纺混纺工艺研究[D]. 上海: 东华大学, 2015:22-27.
ZHANG Qian. Research on the blending process of double-carding technology in rotor spinning[D] Shanghai: Donghua University, 2015:22-27.
[21] 惠林涛. 双分梳转杯纺技术研究与产品开发[D]. 上海: 东华大学, 2019:47-54.
HUI Lintao. Research and product development of double carding rotor spinning technology[D]. Shanghai: Donghua University, 2019:47-54.
[22] 刘晨芳, 徐剑桥, 汪军, 等. 亚麻/棉转杯牛仔纱的设计与开发[J]. 上海纺织科技, 2021, 49(12):47-48,60.
LIU Chenfang, XU Jianqiao, WANG Jun, et al. Design and development of flax / cotton environment-friendly rotor denim yarn[J]. Shanghai Textile Science & Technology, 2021, 49 (12): 47-48,60.
[23] 李鉴洲, 江慧, 汪军. 双分梳转杯色纺纱的工艺与性能研究[J]. 纺织器材, 2021, 48(4):5-8.
LI Jianzhou, JIANG Hui, WANG Jun. Research on the process and performance of double-carding rotor colored yarn[J]. Textile Accessories, 2021, 48 (4): 5-8.
[24] 莫鸿妃, 王妮, 汪军, 等. 环保牛仔布用转杯纺竹节纱花型工艺设计[J]. 纺织器材, 2021, 48(6):5-8.
MO Hongfei, WANG Ni, WANG Jun, et al. Process design of rotor spinning slub yarn pattern for eco-friendly denim[J]. Textile Accessories, 2021, 48 (6): 5-8.
[1] 郭明瑞, 高卫东. 两通道环锭纺单区牵伸纺制段彩竹节纱的方法及其特点[J]. 纺织学报, 2022, 43(08): 21-26.
[2] 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33.
[3] 敖利民, 楼焕, 唐雯. 空心锭包覆纺纱的芯纱残留捻回及其应用[J]. 纺织学报, 2022, 43(07): 41-46.
[4] 纪杰, 韩云龙, 高杰, 汪虎明, 陆彪. 纺纱车间空调系统数学建模及动态仿真[J]. 纺织学报, 2022, 43(03): 176-184.
[5] 朱文硕, 薛元, 徐志武, 于健, 曾德军. 对称循环渐变色彩设计及其色彩渐变纱纺制[J]. 纺织学报, 2022, 43(02): 116-124.
[6] 夏治刚, 徐傲, 万由顺, 卫江, 张慧霞, 唐建东, 郑敏博, 郭沁生, 丁彩玲, 杨圣明, 徐卫林. 基于碳中和的人-机-料-法-环五位一体纺纱新技术解析[J]. 纺织学报, 2022, 43(01): 58-66.
[7] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[8] 王波波, 郑小虎, 申兴旺, 鲍劲松, 刘天元. 基于Elasticsearch的纺纱生产数据追溯方法[J]. 纺织学报, 2021, 42(12): 55-62.
[9] 敖利民, 唐雯. 空心锭包覆纺纱的顺向包缠作用特征[J]. 纺织学报, 2021, 42(11): 39-45.
[10] 杨瑞华, 潘博, 郭霞, 王利军, 李健伟. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(07): 76-81.
[11] 袁理, 熊莹, 谷迁, 王丹书, 霍达, 刘军平. 染色纤维与色纺纱线间的颜色传递规律及其影响因素[J]. 纺织学报, 2021, 42(05): 122-129.
[12] 倪洁, 杨建平, 郁崇文. 股线与单纱捻系数比对粘胶股线性能的影响[J]. 纺织学报, 2021, 42(05): 46-50.
[13] 阮丽, 孙荣基, 刘基宏, 李永贵. 特殊外观结构赛络花式纱的后区牵伸及成纱结构分析[J]. 纺织学报, 2021, 42(03): 77-81.
[14] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[15] 殷士勇, 鲍劲松, 唐仕喜, 杨芸. 环锭纺纱信息物理生产系统建模方法[J]. 纺织学报, 2021, 42(02): 65-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!