纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 136-141.doi: 10.13475/j.fzxb.20220500701

• 染整工程 • 上一篇    下一篇

负载不同极性药物对粘胶织物结构和性能的影响

朱维维1(), 舒伟2, 顾文娟1   

  1. 1.苏州经贸职业技术学院 纺织服装与艺术传媒学院, 江苏 苏州 215009
    2.中国纺织工程学会, 北京 100025
  • 收稿日期:2023-05-08 修回日期:2023-08-06 出版日期:2024-04-15 发布日期:2024-05-13
  • 作者简介:朱维维(1989—),女,博士。主要研究方向为基于超临界CO2流体技术的功能性纤维材料开发。E-mail: 2023022304@szjm.edu.cn
  • 基金资助:
    江苏省自然科学基金项目(BK20230509)

Effects of loading different polar drugs on structure and properties of viscose fabrics

ZHU Weiwei1(), SHU Wei2, GU Wenjuan1   

  1. 1. College of Textile Clothing and Art Media, Suzhou Institute of Trade & Commerce, Suzhou, Jiangsu 215009, China
    2. China Textile Engineering Society, Beijing 100025, China
  • Received:2023-05-08 Revised:2023-08-06 Published:2024-04-15 Online:2024-05-13

摘要:

为应用高效、绿色超临界CO2流体技术制备性能优良的保健类粘胶织物,通过负载不同极性药物烟酰胺、白藜芦醇制备粘胶织物,采用扫描电子显微镜、红外分光光度计、X射线衍射仪、热重差热综合分析仪、万能材料试验机表征和分析经处理后粘胶织物微观结构和宏观性能变化。结果发现:2种药物在粘胶纤维表面的分布形态均为小颗粒,相较白藜芦醇,烟酰胺在纤维表面的分布量更多;2种药物的负载均使得纤维分子链间氢键强度有一定下降,但并未改变其化学结构;极性更强的白藜芦醇对纤维结晶区的影响更加显著,负载2种药物后,粘胶纤维结晶度从41.37%分别下降至29.28%、23.37%;2种药物的负载使得粘胶纤维热降解性能均有轻微下降;药物的负载并未改变粘胶织物拉伸性能。

关键词: 超临界CO2流体, 烟酰胺, 白藜芦醇, 粘胶织物, 结晶度, 热降解性能

Abstract:

Objective It is reported that supercritical CO2 fluid (SCF-CO2) can solubilize many drugs and carry them onto the polymer matrices, which allows to process with thermosensitive drugs and it enables to recover a final impregnated implant free of any solvent residue just by depressurization. Therefore, SCF-CO2 can be used to process functional viscose fabric. To achieve good drug loading performance, it is necessary to study the structure and property of different drugs-loaded viscose fabrics impregnated by SCF-CO2.

Method Viscose fabrics loaded with different polar drugs of nicotinamide, resveratrol were processed by SCF-CO2 at 80 ℃, 20 MPa, 90 min. Scanning electron microscope (SEM) was utilized to analyses the surface morphology of drug-loaded viscose fabric. Fourier transform infrared spectroscopy (FT-IR) was used to monitor the change of the chemical structure of viscose fibre. X-Ray Diffraction (XRD) was applied to measure the crystallinity of drug-loaded viscose fibre. Thermogravimetry (TG/DTA) and INSTRON was respectively utilized to analyse the thermostability and tensile property of viscose fibre.

Results The results showed that the surface morphology of viscose fibre did not change after SCF-CO2 treatment, and Nicotinamide and resveratrol were observed on the fiber surface in the form of small particles, but the distribution quantity of nicotinamide was more than that of resveratrol. The loading drugs had no effect on the chemical structure of viscose fibre, but it weakened the interaction between viscose fiber molecular chains. As a results, SCF-CO2 impregnation showed a plasticizing effect on viscose fiber. After the treatment of the pure SCF-CO2 the crystallinity was virtually changeless, but after being loaded with nicotinamide and resveratrol the crystallinity of viscose fiber was decreased from 41.37% to 29.28%, 23.37%, respectively. It was found that after the viscose fiber was treated with pure SCF-CO2, the aggregate structure did not change significantly. However, after loading nicotinamide and resveratrol, parts of molecular chains of viscose fiber were changed from the ordered structure into disordered structure and the destruction of the ordered structure of viscose fiber loaded with resveratrol was more significant. It was observed that it had a significant degradation at 300 - 400 ℃ for viscose fibre samples and the quality retention rate was about 10%. The initial decomposition temperatures were 319.8 ℃, 320.2 ℃, 317.3 ℃ and 317.4 ℃, respectively, for untreated viscose fibre, treated viscose fibre by pure SCF-CO2, viscose fibre loaded with nicotinamide, and viscose fibre loaded with resveratrol. The corresponding thermogravimetric loss rates were 94.29%, 93.69%, 95.36% and 95.67% respectively and the maximum mass loss rate were 30.5%/℃, 30.6%/℃, 31.2%/℃ and 32.2%/℃, respectively. The initial decomposition temperature of viscose fabric was decreased slightly after drug loading, and the thermogravimetric rate and maximum mass loss rate were increased slightly, indicating that the thermal degradation performance of viscose fabric loaded with drugs decreased to a certain extent, but it was not distinctive. The tensile breaking strength and elongation at break of viscose fabric after SCF-CO2 treatment did not demonstrate distinctive variations.

Conclusion The variations in structure and property of drug-loaded viscose fabrics impregnated by SCF-CO2 were charactered. It is found that a higher loading capacity of nicotinamide in viscose fibre results in a higher distribution quantity on the surface of viscose fibre than resveratrol. Under the effect of the swelling, penetrating of SCF-CO2 and the interaction between drugs and viscose fibre molecular chains viscose fibre is plasticized to certain extent, but its chemical structure has no change. The interaction between nicotinamide, resveratrol and viscose fibre molecular chains causes the decreasing of the crystallinity of drug-loaded viscose fibre from 41.37% to 29.28%, 23.37%. After SCF-CO2 impregnation viscose fabric can still maintain good thermal stability and mechanical property.

Key words: supercritical CO2 fluid, nicotinamide, resveratrol, viscose fabric, crystallinity, thermal degradation property

中图分类号: 

  • TS195.6

图1

粘胶纤维SEM照片"

图2

经超临界CO2流体处理后的粘胶织物红外谱图"

图3

经超临界CO2流体处理后的粘胶织物XRD图谱"

图4

经超临界CO2流体处理后的粘胶织物热降解曲线"

表1

粘胶织物的拉伸性能"

样品名称 方向 断裂强力 断裂伸长率
数值/N 标准差 数值/% 标准差
未处理样 730 22.39
仅流体处理 740 5 24.93 1.07
负载烟酰胺 经向 730 24.11
负载白藜芦醇 730 23.48
未处理样 740 24.03
仅流体处理 740 5 22.05 1.410
负载烟酰胺 纬向 740 21.08
负载白藜芦醇 730 21.0
[1] 黄晓飞. 壳聚糖基载银材料的制备及其抗菌性能的研究[D]. 杭州: 浙江大学, 2018:25-44.
HUANG Xiaofei. Chitosan-based silver composite materials for antibacterial applications[D]. Hangzhou: Zhejiang University, 2018:25-44.
[2] 唐昱. 护肤和健康的纺织品整理[J]. 印染, 2013, 39(16):55-56.
TANG Yu. Skin care and healthy textile finishing[J]. China Dyeing & Finishing, 2013, 39(16):55-56.
[3] 缪福昌. 珍珠纤维的性能及产品开发[J]. 武汉纺织大学学报, 2018, 31(6):15-20.
LIAO Fuchang. Property and product development of pearl fiber[J]. Journal of Wuhan Textile University, 2018, 31(6):15-20.
[4] 陈翠翠. 草珊瑚粘胶纤维的制备及其性能的研究[D]. 青岛: 青岛大学, 2011:37-52.
CHEN Cuicui. Study on property of the fiber made fromthe Sarcandra glabra extracts and rayon cellulose[D]. Qingdao: Qingdao University, 2011:37-52.
[5] 吕淑扬. 蕲艾精油微胶囊的制备及其功能粘胶纤维的研究[D]. 天津: 天津工业大学, 2021:41-52.
LÜ Shuyang. Study on the preparation of Qiai essential oil microcapsules and their functions of viscose fiber[D]. Tianjin:Tiangong University, 2021:41-52.
[6] CHAMPEAU M, THOMASSIN J M, TASSAING T, et al. Drug loading of polymer implants by supercritical CO2 assisted impregnation: a review[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2015,209:248-259.
[7] ZHU W W, FAN Y, ZHANG C, et al. Impregnation of viscose subtrate with nicotinamide in supercritical carbondioxide[J]. Textile Research Journal, 2019, 89(17): 3475-3483.
[8] ZHU W W, SHI W, SHI M W, et al. Solubility and loading ability of benzene derivative drugs onto viscose substrate in supercritical carbon dioxide and their release behavior in solvent[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2020.120200.
[9] MILOVANOVIC S, STAMENIC M, MARKOVIC D, et al. Solubility of thymol in supercritical carbon dioxide and its impregnation on cotton gauze[J]. The Journal of Supercritical Fluids, 2013, 84: 173-181.
[10] CARRILLO F, COLOM X, SUNOL J J, et al. Structural FTIR analyis and thermal characterisation of Lyocell and viscose-type fibres[J]. European Polymer Journal, 2004, 40(9): 2229-2234.
[11] CHUG C, LEE M, CHOE E K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy[J]. Carbohydrate Polymers, 2004, 58(4): 417-420.
[12] 吴琪, 潘鼎. X-ray衍射法研究粘胶纤维在热处理过程中晶区结构的变化[J]. 东华大学学报, 1998(6): 92-94.
WU Q, PAN Ding. Research of change of crystal zonestructure of viscose fiber during heat treatment by X-ray diffraction method[J]. Journal of Donghua University, 1998(6): 92-94.
[1] 范博, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界CO2流体染色聚酯纤维中的扩散行为[J]. 纺织学报, 2024, 45(02): 134-141.
[2] 朱维维, 施楣梧, 龙家杰. 基于超临界CO2流体的载药二醋酸纤维释放行为[J]. 纺织学报, 2023, 44(10): 31-38.
[3] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[4] 朱维维, 龙家杰, 施楣梧. 粘胶织物中烟酰胺的释放曲线及其模型拟合[J]. 纺织学报, 2023, 44(03): 139-146.
[5] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[6] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[7] 朱维维, 管丽媛, 龙家杰, 施楣梧. 超临界CO2流体处理时间对二醋酯纤维结构与性能的影响[J]. 纺织学报, 2021, 42(12): 97-102.
[8] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[9] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[10] 朱维维, 蔡冲, 张聪, 龙家杰, 施楣梧. 超临界CO2处理温度对二醋酸纤维结构与性能的影响[J]. 纺织学报, 2020, 41(03): 8-14.
[11] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
[12] 李梦珍, 张斌, 郁崇文. 采用N-甲基吡咯烷酮的苎麻纤维柔软处理[J]. 纺织学报, 2019, 40(04): 72-76.
[13] 向国栋, 高庆文, 邓倩倩, 张须臻, 王秀华. 阳离子染料易染改性聚酯的固相缩聚工艺与性能[J]. 纺织学报, 2019, 40(04): 21-25.
[14] 马小路 张莉彦 李好义 谭晶 何万林 杨卫民. 熔体微分静电纺丝取向纳米线的制备[J]. 纺织学报, 2017, 38(01): 8-12.
[15] 杜晓莹 傅佳佳 王鸿博 高卫东 蒋春燕. 超声波处理对纤维素酶法水解竹粉的影响[J]. 纺织学报, 2017, 38(01): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!