纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 73-80.doi: 10.13475/j.fzxb.20220501401

• 纺织工程 • 上一篇    下一篇

基于卷积滤波的接触式纱线张力测量方法

彭来湖1,2, 刘建廷1, 李杨1, 齐育宝1, 李建强2(), 茅木泉3   

  1. 1.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
    2.浙江理工大学龙港研究院有限公司, 浙江 温州 325802
    3.杭州高腾机电科技有限公司, 浙江 杭州 310018
  • 收稿日期:2022-05-06 修回日期:2023-01-12 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 李建强(1990—),男,博士。主要研究方向为纱线张力控制技术。E-mail: wzcnljq@126.com
  • 作者简介:彭来湖(1980—),男,副教授,博士。主要研究方向为针织装备技术。
  • 基金资助:
    浙江省博士后科研项目特别资助项目(ZJ2020004)

Contact yarn tension measurement method based on convolutional filtering

PENG Laihu1,2, LIU Jianting1, LI Yang1, QI Yubao1, LI Jianqiang2(), MAO Muquan3   

  1. 1. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Research Institute of Zhejiang Sci-Tech University in Longgang, Wenzhou, Zhejiang 325802, China
    3. Hangzhou Golden Electromechanical Technology Co., Ltd., Hangzhou, Zhejiang 310018, China
  • Received:2022-05-06 Revised:2023-01-12 Published:2023-08-15 Online:2023-09-21

摘要:

为有效保持纱线张力控制系统输出稳定的纱线张力,针对张力测量中出现的不收敛、抖动大、精度低和毛刺较多等问题对张力反馈调节系统的影响,提出一种基于卷积滤波的接触式纱线张力测量方法。首先在悬臂梁正反面粘贴电阻应变片,利用压阻效应将纱线张力信号转化为电压信号进行测量,经过分析可以发现受纱线输送路径环境及传感器结构特性影响,张力信号耦合了低频、高频和奇异噪声,不能直接用于纱线张力控制系统,因此,为解耦真实张力值,在软件控制系统中设计限幅滤波算法滤除奇异噪声;用低通滤波去除高频噪声;用S-G卷积算法去除低频耦合噪声。为验证算法可靠性与实用性,搭建纱线张力测量实验平台,对恒张力和变张力条件下纱线张力测量数据与标准数据进行对比分析。结果表明:该方法可将张力波动控制在0.6%以内,这对复杂工况下的纱线张力检测及张力控制系统具有指导意义。

关键词: 卷积滤波, 悬臂梁, 压阻效应, 纱线张力, 噪声干扰, 实时测量

Abstract:

Objective During textile production, yarn tension has an important impact on product quality and production efficiency, and it is necessary to monitor the peak value of yarn tension in real time and obtain the stable value of current yarn tension. The textile equipment measures the yarn tension transmitted by the yarn conveyor in real time through the yarn tension sensor, and transmits the measurement results to the yarn conveyor for regulation. The existing yarn tension sensor can monitor the yarn tension, but because the measured tension signal has problems such as non convergence, large chattering, low accuracy and many burrs, it cannot be applied to the feedback regulation of yarn tension. Otherwise, the measurement error and amplitude will become larger.

Method When the yarn is fed and knitted into a loop by the yarn feeder and the needle cylinder at a certain speed ratio, the tension will fluctuate with high frequency while keeping relatively constant under the dynamic traction and transportation of the knitting needle and the yarn feeder. On the one hand, the yarn drawn by the knitting needle is a process of intermittently variable speed yarn bending and looping, with periodic motion characteristics. On the other hand, the yarn itself has certain elasticity. Under the action of periodic traction, the stress wave in the yarn body will also be scattered and reflected during the transmission process. The dominant performance is the high-frequency fluctuation of yarn tension. Taking the high-speed seamless underwear machine as an example, the highest frequency of yarn tension measurement is 2.6 kHz, so the tension sensor should meet the highest frequency response requirements. At the same time, on the premise that the yarn tension measurement does not distort and amplify the effective signal, the signal higher than this frequency should be filtered out. This paper first analyzes the characteristics of the problems existing in the existing yarn tension sensors, divides the interference signals into three types, namely, low frequency, high frequency and singular point noise, and then designs three algorithms to deal with them: first, filter the singular noise through the amplitude limiting filtering algorithm (the amplitude of the tension measurement results at a moment is far greater than the actual tension measurement results). High frequency noise is removed by low-pass filtering, and the yarn tension working frequency is taken as the threshold value. The signal above this frequency is defined as high frequency signal; The S-G convolution algorithm is used to remove the low-frequency coupling noise. The low-frequency even coupling signal and the actual working frequency are intertwined, and the low-frequency signal cannot be removed separately. In order to verify the reliability and practicability of the algorithm, an experimental platform for yarn tension measurement was built to compare and analyze the yarn tension measurement data and standard data under constant tension and variable tension conditions.

Results In order to further verify the accuracy and effectiveness of the algorithm, the yarn conveyor of the control platform changed the yarn tension from 36 cN to 42 cN, and used TENSOMETRIC tension sensor and the sensor designed in this paper to conduct real-time testing of tension fluctuation. It can be seen that the actual measured yarn tension conforms to the mutation law, and the yarn mutation tension fitted by this method is better than the tension fitted by the standard sensor. The results show that this method can control the tension measurement error within 0.6%, which has guiding significance for the yarn tension detection and control system under complex working conditions.

Conclusion By using the cantilever structure, filtering and convolution algorithm, this paper proposes a contact yarn tension detection method based on convolution filtering algorithm. Firstly, according to the characteristics of the yarn fluctuation of the high-speed seamless underwear machine and the structural characteristics of the cantilever beam, the optimization method of the yarn tension sensor is determined. Then, the acquired data are processed by amplitude limiting filtering, low-pass filtering and S-G convolution algorithm. Finally, the measured results are compared with those of TENSOMETRIC tension sensor through experiments. The tension error is within 0.6% and the standard deviation is within 0.62%. Moreover, this method has good applicability to the detection of yarn sudden change tension, and can meet the real-time measurement of yarn tension under complex working environment.

Key words: convolution filtering, cantilever beam, piezoresistive effect, yarn tension, noise interference, real-time measurement

中图分类号: 

  • TS181.9

图1

纱线测量和信号处理方案"

图2

纱线受力分析图"

图3

悬臂梁结构示意图"

图4

应变云图"

图5

一阶模态分析"

图6

悬臂梁受力图"

图7

纱线张力波动信号图"

图8

闭环增益放大电路图"

图9

振动信号测试曲线"

图10

软件工作流程图"

图11

实验平台简图 1-纱线;2-输纱器;3-张力传感器;4-勾针;5-槽筒;6-纱筒。"

图12

静态标定"

图13

静态标定拟合"

图14

概率统计直方图"

图15

限幅滤波图"

图16

低通滤波"

图17

数据拟合对比"

图18

实际张力测试和拟合结果"

[1] 蒋林军, 张华. 无传感参数自适应纱线卷绕张力控制方法[J]. 纺织学报, 2022, 43(4):167-173.
JIANG Linjun, ZHANG Hua. Sensorless parameter adaptive yarn winding tension control method[J]. Journal of Textile Research, 2022, 43(4): 167-173.
[2] CHEN G F, SUN H C, ZHAI L, et al. A capacitance based circuit design for yarn breaking detection[J]. Advanced Materials Research, 2012, 562-564:1840-1843.
[3] 朱光远, 祖洪飞. 用于小型化纱线张力仪的后端电路设计与实现[J]. 印制电路信息, 2021, 29(3):3-8.
ZHU Guangyuan, ZU Hongfei. Design and implementation of rear-end circuit for miniaturized yarn tensioner[J]. Printed Circuit Information, 2021, 29(3): 3-8.
[4] 李雪娇, 张琦. 高速经编机纱线动态张力自适应式积极调控[J]. 针织工业, 2022(5):13-16.
LI Xuejiao, ZHANG Qi. Adaptive active regulation of yarn dynamic tension on high-speed warp knitting machine[J]. Knitting Industries, 2022(5): 13-16.
[5] 孙帅, 缪旭红, 张灵婕, 等. 经编纱线张力补偿装置的工作机制[J]. 纺织学报, 2018, 39(11):140-144.
SUN Shuai, MIAO Xuhong, ZHANG Lingjie, et al. Working mechanism of warp knitted yarn tension compensation device[J]. Journal of Textile Research, 2018, 39(11): 140-144.
doi: 10.1177/004051756903900203
[6] 陈红霞, 蒋高明. 经编机经纱动态张力数字化测试[J]. 针织工业, 2004(6):35-38,23.
CHEN Hongxia, JIANG Gaoming. Digital test of warp dynamic tension on warp knitting machine[J]. Knitting Industries, 2004 (6): 35-38,23.
[7] 章钰娟, 彭来湖, 徐郁山, 等. 非接触式纱线状态检测技术研究[J]. 现代纺织技术, 2022, 30(1):101-018.
ZHANG Yujuan, PENG Laihu, XU Yushan, et al. Research on non-contact yarn condition detection technology. Modern Textile Technology, 2022, 30(1):101-108.
[8] 吴震宇, 陈琳荣, 李子军, 等. 接触式纱线张力传感器动态测量模型[J]. 纺织学报, 2013, 34(8):138-142.
WU Zhenyu, CHEN Linrong, LI Zijun, et al. Contact yarn tension transfer sensor dynamic measurement model[J]. Journal of Textile Research, 2013, 34(8): 138-142.
[9] VÍTOR Carvalho. Yarn evenness parameters evaluation: a new approach[J]. Textile Research Journal, 2008, 78(2): 119-127.
doi: 10.1177/0040517507076744
[10] MIKOLAJCZYK Z. Model of the feeding process of anisotropic warp knitted fabrics[J]. Fibres and Textiles in Eastern Europe, 2003, 11(2): 58 - 62.
[11] JAFARIPANAH M, AL-HASHIMI B M, WHITE N M. Application of analog adaptive filters for dynamic sensor compensation[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54 (1): 245 - 251.
doi: 10.1109/TIM.2004.839763
[12] AFARIPANAH M, ALHASHIMI B M, WHITE N M. Dynamic sensor compensation using analogue adaptive filter compatible with digital technology[J]. IEE Proceedings—Circuits,Devices and Systems, 2005, 152(6): 745 - 751.
doi: 10.1049/ip-cds:20045146
[1] 李杨, 彭来湖, 刘建廷, 胡旭东, 郑秋扬. 基于横向振动频率的轴向运动纱线张力测量[J]. 纺织学报, 2023, 44(06): 72-77.
[2] 纪越, 潘东, 马杰东, 宋丽梅, 董九志. 基于机器视觉的弦振动纱线张力非接触检测系统[J]. 纺织学报, 2023, 44(05): 198-204.
[3] 应志平, 王伟青, 吴震宇, 胡旭东. 三维正交机织复合材料的冲后压缩性能[J]. 纺织学报, 2023, 44(01): 129-135.
[4] 彭来湖, 章钰娟, 吕永法, 戴宁, 李建强. 纬编针织纱线输送状态检测方法及其动态特性[J]. 纺织学报, 2022, 43(12): 167-172.
[5] 郭敏, 高卫东, 朱博, 刘建立, 郭明瑞. 模拟织造状态下的浆纱耐磨性能测试方法[J]. 纺织学报, 2021, 42(11): 46-50.
[6] 戴宁, 彭来湖, 胡旭东, 钟垚森, 戚栋明. 基于轴向运动悬臂梁理论的无缝内衣机织针横向振动特性[J]. 纺织学报, 2021, 42(02): 193-20.
[7] 孙帅, 缪旭红, 张琦, 王瑾. 高速经编机上纱线张力的波动规律[J]. 纺织学报, 2020, 41(03): 51-55.
[8] 徐云龙, 夏风林. 双针床经编机梳栉摆动对瞬时需纱量和纱线张力的影响[J]. 纺织学报, 2019, 40(06): 106-110.
[9] 孙帅 缪旭红 张灵婕 胡瑜. 经编纱线张力补偿装置的工作机制[J]. 纺织学报, 2018, 39(11): 140-144.
[10] 胡瑜 刘行 缪旭红. 经编纱线动态张力评价指标[J]. 纺织学报, 2018, 39(02): 68-72.
[11] 扈昕瞳 张玉井 孟婥 孙以泽. 编织锭子放线速度对纱线张力调控的建模与影响[J]. 纺织学报, 2017, 38(06): 111-117.
[12] 夏胜华 孙以泽 孟婥 任国斌 . 簇绒地毯织机提花装置的绕纱动态张力分析[J]. 纺织学报, 2015, 36(07): 136-141.
[13] 吴震宇 陈琳荣 李子军 叶进余 胡科桥. 接触式纱线张力传感器动态测量模型[J]. 纺织学报, 2013, 34(8): 138-0.
[14] 丁彩红;唐军. 牵引罗拉稳定纱线张力的作用机制[J]. 纺织学报, 2010, 31(2): 110-114.
[15] 陈广锋;吴春晖;孙以泽;孙菁菁. 三圈高地毯簇绒机提花控制系统[J]. 纺织学报, 2008, 29(3): 113-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!