纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 207-213.doi: 10.13475/j.fzxb.20220502201

• 机械与器材 • 上一篇    下一篇

类回转预制体针刺机器人系统设计

李皎1,2, 陈利1,2, 姚天磊1,2, 陈小明1,2,3()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    3.天津工业大学 机械工程学院, 天津 300387
  • 收稿日期:2022-05-07 修回日期:2023-02-06 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 陈小明(1984—),男,高级实验师,博士。主要研究方向为纺织机器人装备及纺织复合材料。 E-mail:chenxiaoming@tiangong.edu.cn
  • 作者简介:李皎(1984—),女,博士生。主要研究方向为纺织机器人装备及纺织复合材料。
  • 基金资助:
    天津市教委科研计划项目(2018ZD13);先进功能复合材料技术重点实验室基金项目(6142906210406);天津市自然科学基金项目(19JCYBJC18300)

Design of needling robot system for quasi-rotary preforms

LI Jiao1,2, CHEN Li1,2, YAO Tianlei1,2, CHEN Xiaoming1,2,3()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin 300387, China
    3. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
  • Received:2022-05-07 Revised:2023-02-06 Published:2023-07-15 Online:2023-08-10

摘要:

类回转复合材料预制体外形结构复杂,目前的4轴针刺系统和6关节机器人针刺成型系统难以满足其成型织造要求,提出一种基于机器人平台的7轴联动针刺成型系统,用于类回转预制体的针刺成型。开展了7轴针刺成型系统的机械结构设计、控制系统设计,以及针刺轨迹规划方法研究,并通过运动仿真和实验验证系统的可行性。结果表明:针刺实验轨迹和理论设计轨迹高度一致,针迹均匀,预制体表面平整,7轴联动针刺成型系统成功实现了类回转预制体的高质量针刺成型;采用Powershape和Powermill软件成功实现了连续轨迹线设计和针刺机器人6轴程序输出;自主开发的6轴程序转换成7轴程序的算法是可靠的,基于Python和QT Designer开发的7轴针刺机器人程序后处理软件成功实现了7轴针刺机器人可执行程序的高精确输出。本文系统可用于高速飞行器天线罩、舱段等复合材料预制体的高质量针刺成型。

关键词: 类回转预制体, 针刺机器人, 系统设计, 三维针刺复合材料, 结构设计

Abstract:

Objective Quasi-rotary composite preforms are increasingly used in high-speed aircrafts. The shape and structure of the quasi-rotary composite preform are complex, and the current 4-axis needling system and 6-joint robot needling system cannot meet its weaving requirements. A 7-axis linkage needling system based on a robot platform was proposed for needling of the quasi-rotary preforms.

Method The mechanical structure design, control system design, and needling trajectory planning method of the 7-axis needling system were carried out, and the feasibility of the system was verified by motion simulation and experiment. The needling end-effector adopted apneumatic actuator, which had simple structure, easy maintenance, and light weight. Considering the high-quality needling requirements of large size preform components, a computer numerical control (CNC) rotary table with large load capacity and high accuracy was selected. The needling trajectory planning software was developed to facilitate the generation of the control program of the quasi-rotary preform needling robot.

Results The quasi-rotary composite preform needling robot was composed of a 6-joint mechanical arm, a needling end-effector, and a CNC rotary table. A Kawasaki RS050N mechanical arm was adopted for 6-joint mechanical arm, with end load of 50 kg. Universal TK13250Q CNC vertical and horizontal rotary table was selected as the rotary table. The reduction ratio was 90, and the maximum allowable inertia was 1.2 kg/m2, which meet the system operation requirements. The continuous milling program development function of Powershape and Powermill was adopted to design the needling trajectory and output the position and posture information of continuous points on the trajectory. Based on Python language and QT Designer, the post-processing software of 7-axis linkage needling robot program was developed (Fig. 7). Through the simple user interface, the 7-axis needling program was designed, which reduced the workload and the human error caused by the tedious generation process. The main work of converting 6-axis program to 7-axis program was to transform the position and posture of needle points in the plane. The experiment verification results showed that the system achieved the integral needling formation of the quasi-rotary preform, the needling experimental trajectory of the quasi-rotary body was highly consistent with the theoretical design trajectory, the needling trojectory was uniform, and the surface of the preform was flat, which proved the feasibility of the 7-axis linkage needling system (Fig. 10). It was proved feasible to use Powershape and Powermill software for continuous trajectory design and robot 6-axis program output, and the 7-axis linkage needling robot independently developed based on Python could execute the program post-processing. The algorithm for converting programs into 7-axis programs was reliable.

Conclusion This paper presented a 7-axis robot needling system for manufacturing composite preforms with quasi-rotary structures. The needling robot system realized the needling formation of the quasi-rotary preforms. The needling experimental trajectory of the preform parts of quasi-rotary body was highly consistent with the theoretical design trajectory, the needle trajectory was uniform, and the surface of the preform parts was flat, which proved the feasibility of the 7-axis linkage needling system. It was feasible to use Powershape and Powermill for continuous trajectory design and 6-axis robot program output, which facilitated needling trajectory planning of complex special-shaped surfaces. The self-developed algorithm of transform the 6-axis program into the 7-axis program was reliable, and the self-developed post-processing software of the executable program of the 7-axis linkage needling robot based on Python was feasible. The system could be used for high-quality needling of radome preforms and cabin preforms for high-speed aircrafts.

Key words: quasi-rotary preform, needling robot, system design, three-dimensional needled composite, structure design

中图分类号: 

  • TB332

图1

类回转预制体针刺机器人整体结构图"

图2

针刺系统部件"

图3

控制系统组成和内部通信"

图4

针刺机器人程序运行流程图"

图5

基于Powershape和Powermill的针刺轨迹规划"

图6

平面内点位置变换示意图"

图7

7轴联动针刺机器人程序后处理软件系统"

图8

基于K-ROSET的针刺运动仿真"

图9

类回转预制体针刺机器人样机"

图10

类回转预制体针刺实验验证"

[1] 陈小明, 李晨阳, 李皎, 等. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(5):185-192.
CHEN Xiaoming, LI Chenyang, LI Jiao, et al. Research progress of three-dimensional needling technology[J]. Journal of Textile Research, 2021, 42(5):185-192.
[2] CHEN X, CHEN L, ZHANG C, et al. Three-dimensional needle-punching for composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2016, 85: 12-30.
doi: 10.1016/j.compositesa.2016.03.004
[3] JI A, CUI H, LI H, et al. Performance analysis of a carbon cloth/felt layer needled preform[J]. New Carbon Materials, 2011, 26(2): 109-116.
doi: 10.1016/S1872-5805(11)60070-X
[4] LACOSTE M, LACOMBE A, JOYEZ P, et al. Carbon/carbon extendible nozzles[J]. Acta Astronautica, 2002, 50(6): 357-367.
doi: 10.1016/S0094-5765(01)00178-3
[5] SU J, CUI H, LI R, et al. The structure and property of new needle carbon cloth C/C composite[J]. New Carbon Materials, 2000, 15(2): 11-15.
[6] CHEN T, LIAO J, LIU G, et al. Effects of needle-punched felt structure on the mechanical properties of carbon/carbon composites[J]. Carbon, 2003, 41(5): 993-999.
doi: 10.1016/S0008-6223(02)00445-1
[7] 刘宇峰, 俸翔, 王金明, 等. 高性能针刺碳/碳复合材料的制备与性能[J]. 无机材料学报, 2020, 35(10):1105-1111.
doi: 10.15541/jim20190607
LIU Yufeng, FENG Xiang, WANG Jinming, et al. Preparation and properties of high-performance needled carbon/carbon composites[J]. Journal of Inorganic Materials, 2020, 35(10):1105-1111.
doi: 10.15541/jim20190607
[8] 董九志, 腊鑫, 陈云军, 等. 针刺炭/炭坩埚预制体叠层炭布裁剪尺寸建模[J]. 天津工业大学学报, 2020, 39(1):57-62.
DONG Jiuzhi, LA Xin, CHEN Yunjun, et al. Modeling of cutting size of laminated carbon cloth for needled carbon/carbon crucible preform[J]. Journal of Tiangong University, 2020, 39(1):57-62.
[9] OLRY P. Process and apparatus for manufacturing axi-symmetrical three-dimensional structures: US4621662A[P]. 1986-11-11.
[10] 房坤鹏, 刘延友, 乔志炜, 等. 一种变直径回转体织物针刺成型设备:201710200976.7[P]. 2017-03-30.
FANG Kunpeng, LIU Yanyou, QIAO Zhiwei, et al. Variable diameter rotary fabric needle forming device: 201710200976.7[P]. 2017-03-30.
[11] 陈小明, 李皎, 张一帆, 等. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
CHEN Xiaoming, LI Jiao, ZHANG Yifan, et al. Design of flexible needle punching system for rotary structure preform[J]. Journal of Textile research, 2020, 41(11):156-161.
[12] CHEN X, ZHAO Y, ZHANG C, et al. Robot needle-punching for manufacturing composite preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50: 132-139.
doi: 10.1016/j.rcim.2017.09.008
[13] CHEN X, ZHANG Y, XIE J, et al. Robot needle-punching path planning for complex surface preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 52: 24-34.
doi: 10.1016/j.rcim.2018.02.004
[1] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[2] 周赳, 胡伊丽. 等经浮长的三纬组合全显结构设计与应用[J]. 纺织学报, 2023, 44(06): 78-84.
[3] 陈弈菲, 刘驰, 杨萌. 基于响应曲面分析的连体泳装结构情绪测量[J]. 纺织学报, 2022, 43(10): 161-168.
[4] 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210.
[5] 鲁虹, 宋佳怡, 李圆圆, 滕峻峰. 基于合体两片袖的内旋造型结构设计[J]. 纺织学报, 2022, 43(08): 140-146.
[6] 董智佳, 孙菲, 丛洪莲, 俞旭良. 低损耗纬编成形女士背心的结构设计与建模[J]. 纺织学报, 2022, 43(07): 129-134.
[7] 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(04): 203-209.
[8] 陆爽怿, 周赳. 单经双纬组合全显色提花织物的结构交织平衡特征[J]. 纺织学报, 2021, 42(09): 59-65.
[9] 柯莹, 张海棠, 朱晓涵, 王宏付, 王敏. 电加热高空清洁作业服研制与性能评价[J]. 纺织学报, 2021, 42(08): 149-155.
[10] 王伟荣, 丛洪莲. 基于下肢运动特征的纬编无缝瑜伽裤结构设计[J]. 纺织学报, 2021, 42(06): 140-145.
[11] 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184.
[12] 陈小明, 李晨阳, 李皎, 谢军波, 张一帆, 陈利. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(05): 185-192.
[13] 宋莹. 旗袍个性定制和展示系统的交互设计[J]. 纺织学报, 2021, 42(04): 144-148.
[14] 方佳璐, 陈明艳, 黄紫荆. 漂浮自救泳衣设计开发[J]. 纺织学报, 2020, 41(12): 118-123.
[15] 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!