纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 129-136.doi: 10.13475/j.fzxb.20220503501

• 染整与化学品 • 上一篇    下一篇

聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学

唐奇1, 柴丽琴1, 徐天伟1, 王成龙1, 王直成2, 郑今欢1()   

  1. 1.浙江理工大学 生态染整技术教育部工程研究中心, 浙江 杭州 310018
    2.湖州倍亨纺织有限公司, 浙江 湖州 313021
  • 收稿日期:2022-05-12 修回日期:2023-03-07 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 郑今欢
  • 作者简介:唐奇(1998—),女,硕士生。主要研究方向为生态染整技术。
  • 基金资助:
    浙江省基础公益研究计划项目(LGC20E030001);浙江省基础公益研究计划项目(LGF21E030004)

Dyeing kinetics of polylactide/poly(3-hydroxybutyrate-co-valerate) blended fibers and their chenille yarns

TANG Qi1, CHAI Liqin1, XU Tianwei1, WANG Chenglong1, WANG Zhicheng2, ZHENG Jinhuan1()   

  1. 1. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Huzhou Beiheng Textile Co., Ltd., Huzhou, Zhejiang 313021, China
  • Received:2022-05-12 Revised:2023-03-07 Published:2023-06-15 Online:2023-07-20
  • Contact: ZHENG Jinhuan

摘要:

为进一步了解生物可降解聚乳酸/聚3-羟基丁酸-戊酸酯(PLA/PHBV)共混纤维及其雪尼尔纱的染色性能,提高对含生物可降解聚酯纤维雪尼尔纱染色技术的可控性,研究了PLA/PHBV纤维及PET/(PLA/PHBV)雪尼尔纱的染色性能,探究了C. I. 分散红60在雪尼尔纱及其原材料纤维上的染色动力学,并对各纤维的生物可降解性能进行了研究。结果表明:C. I. 分散红60在PLA/PHBV纤维及PET/(PLA/PHBV)雪尼尔纱上的上染率随着温度的升高而明显提升,但为兼顾纤维的力学性能,染色温度不宜超过110 ℃;C. I. 分散红60在PET纤维、PLA/PHBV纤维及雪尼尔纱3种材料上的吸附均符合准二级动力学方程,其在PLA/PHBV纤维上的染色平衡吸附量最高,在PET纤维上的最低,并且随着染色温度升高,C. I. 分散红60在3种材料上的染色速率加快,半染时间缩短,扩散系数增大;各纤维的降解效率均随土埋时间的延长而提高,其中PLA/PHBV纤维的降解性能最好,PLA纤维次之,且PLA或PLA/PHBV生物可降解聚酯纤维的存在,可加快PET纤维的降解速率。

关键词: 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维, 雪尼尔纱, 分散染料, 染色性能, 染色动力学

Abstract:

Objective In order to further understand the dyeing performance of biodegradable polylactide/poly (3-hydroxybutyrate-co-valerate) (PLA/PHBV) blended fibers and their chenille yarns, and to improve the controlled dyeing technology of chenille yarn containing biodegradable polyester fiber, dyeing research was carried out.
Method The dyeing properties of PLA/PHBV fiber and PET/(PLA/PHBV) chenille yarn was studied and the parameters of dyeing rate constant, half dyeing time and diffusion coefficient were analyzed. Dyeing kinetics of C. I. Dispersed Red 60 on chenille yarn and its raw materials were explored and the biodegradable properties of each fiber were also studied.
Results The research results show that dyeing rate of C. I. Dispersed Red 60 on PLA/PHBV fiber and PET/(PLA/PHBV) chenille yarn was increased obviously with the increase of temperature, but the dyeing temperature was found not to exceed 110 ℃ in order to achieve the required mechanical properties of the fiber (Tab. 1 and Fig. 2). When the bath ratio was close to infinity, C. I. Dispersed Red 60 could stain the three materials faster at the initial stage of dyeing, after dyeing at 100 ℃ for 50 min, the adsorption capacity of the fibers to dyes basically reached the equilibrium state (Fig. 4(a)). When the dyeing temperature was increased to 110 ℃, the initial dyeing rate and equilibrium dyeing amount of C. I. Dispersed Red 60 on the three materials were significantly increased, and the time to reach the equilibrium state was shortened to about 40 min (Fig. 4(b)). The adsorption of C. I. Dispersed Red 60 on PET, PLA/PHBV and chenille yarn conformed to the quasi-second-order kinetic equation (Fig. 6). Among them, C. I. Dispersed Red 60 had the highest dyeing equilibrium adsorption capacity on PLA/PHBV fiber, and the lowest on PET fiber. With the increase of dyeing temperature, the dyeing rate of C. I. Disperse Red 60 on the three materials was accelerated (Tab. 3), the half staining time was shortened and the diffusion coefficient was increased (Tab. 4). The results of soil burial test showed that the degradation efficiency of all fibers increased with the extension of soil burial time, and PLA/PHBV fiber had the best degradation performance, followed by PLA. Moreover, the existence of PLA or PLA/PHBV biodegradable polyester fibers could accelerate the degradation rate of PET fiber (Fig. 8 and Fig. 9).
Conclusion It can be concluded from the research that with the increase of dyeing temperature, the dyeing rate of C. I. Dispersed Red 60 on PLA/PHBV fiber and chenille yarn increased, but the dyeing temperature should not exceed 110 ℃, otherwise the strength loss of PLA/PHBV fiber and chenille yarn was serious. The adsorption of C. I. Disperse Red 60 on PET, PLA/PHBV fibers and chenille fibers was consistent with the quasi-second-order dyeing kinetics model. By increasing the dyeing temperature to 110 ℃, the equilibrium dyeing amount, diffusion rate and diffusion coefficient of C. I. Dispersed Red 60 on PET, PLA/PHBV fiber and chenille yarn can be significantly improved, and the half-dyeing time can be shortened. C. I. Dispersed Red 60 had the highest equilibrium dye amount, diffusion rate and diffusion coefficient on PLA/PHBV fiber, and the shortest half-dyeing time. The corresponding value was the lowest in PET fiber. The blending of PLA/PHBV fiber is beneficial to improve the balance dyeing amount, diffusion rate and diffusion coefficient of chenille yarn, and shorten the half-dyeing time. The existence of PLA or PLA/PHBV biodegradable polyester fiber is beneficial to accelerate the degradation rate of refractory PET fiber, which provides a useful reference for the development of products containing biodegradable fiber. Biodegradable polyester materials have the dual advantages of protecting fossil resources and reducing carbon dioxide emission. The research, development and application of biodegradable polyester materials in textile field is an important innovative direction of sustainable development.

Key words: polylactide/poly(3-hydroxybutyrate-co-valerate) fiber, chenille yarn, disperse dye, dyeing property, dyeing kinetics

中图分类号: 

  • TS190.6

图1

染色工艺曲线"

表1

C. I. 分散红60在PLA/PHBV纤维及雪尼尔纱上的上染百分率和K/S值"

染色温
度/℃
上染百分率/% K/S
PLA/PHBV 雪尼尔纱 PLA/PHBV 雪尼尔纱
90 73.21 66.40 6.33 4.48
100 76.36 76.54 7.85 5.76
110 97.90 97.97 10.22 9.18
120 97.98 98.14 10.45 9.32

图2

温度对PLA/PHBV纤维及雪尼尔纱力学性能的影响"

图3

C. I. 分散红60在丙酮/水(7∶3)混合溶剂中的标准工作曲线"

图4

C. I. 分散红60对PLA/PHBV纤维、PET纤维及雪尼尔纱的上染速率曲线"

图5

C. I. 分散红60在PLA/PHBV纤维、PET纤维及雪尼尔纱上吸附的准一级动力学方程拟合曲线"

表2

C. I. 分散红60在PLA/PHBV纤维、PET纤维及雪尼尔纱上的准一级动力学参数"

染色温
度/℃
纤维种类 准一级动力学参数
拟合公式 拟合系数R2
100 PLA/PHBV y=-0.042 68x+2.837 1 0.769 96
PET y=-0.039 22x+3.262 4 0.908 73
雪尼尔纱 y=-0.042 59x+3.426 5 0.917 59
110 PLA/PHBV y=-0.043 43x+2.431 9 0.733 17
PET y=-0.044 46x+3.032 3 0.798 19
雪尼尔纱 y=-0.073 16x+2.804 7 0.617 57

图6

C. I. 分散红60在PLA/PHBV纤维、PET纤维及雪尼尔纱上吸附的准二级动力学方程拟合曲线"

表3

C. I. 分散红60在PLA/PHBV纤维、PET纤维及雪尼尔纱上的准二级动力学参数"

染色温
度/℃
纤维
种类
拟合系
R2
染色速率常
k2/min
C∞,exp/
(mg·g-1)
C∞,cal/
(mg·g-1)
100 PLA/PHBV 0.999 48 4.09×10-3 88.711 90.416
PET 0.999 17 2.63×10-3 74.918 77.340
雪尼尔纱 0.999 22 3.88×10-3 77.956 79.051
110 PLA/PHBV 0.999 46 5.66×10-3 95.823 96.899
PET 0.998 62 3.01×10-3 91.516 94.518
雪尼尔纱 0.998 98 4.04×10-3 92.036 94.967

图7

共混纤维雪尼尔纱染料的上染量与t1/2的关系"

表4

C. I. 分散红60在PLA/PHBV、PET及雪尼尔纱上的扩散系数和半染时间"

染色温
度/℃
纤维种类 扩散系数
D/(10-15 m2·min-1)
半染时
间/min
100 PLA/PHBV 13.860 2.704
PET 6.223 4.916
雪尼尔纱 8.422 3.260
110 PLA/PHBV 16.978 1.823
PET 7.657 3.515
雪尼尔纱 11.357 2.606

图8

土埋处理时间对纤维质量损失率的影响"

图9

土埋处理时间对纤维断裂强力的影响"

[1] 刘璐. PTT花式纱纬编针织物服用性能研究[D]. 上海: 东华大学, 2007: 13.
LIU Lu. Researching the end use ability of PTT fancy yarn fabric[D]. Shanghai: Donghua University, 2007: 13.
[2] 陈鹏, 廖世豪, 沈兰萍, 等. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(5):12-17.
CHEN Peng, LIAO Shihao, SHEN Lanping, et al. Dyeing properties of poly (lactic acid)/poly (ketone) blend fibers with disperse dyes[J]. Journal of Textile Research, 2022, 43(5):12-17.
[3] 赵钰, 沈兰萍, 王瑄, 等. PLA/PHBV纤维的热学性能[J]. 合成纤维, 2017, 46(6):6-8,35.
ZHAO Yu, SHEN Lanping, WANG Xuan, et al. Thermal properties of PLA/PHBV fibers[J]. Synthetic Fiber in China, 2017, 46(6):6-8,35.
[4] 徐天伟, 柴璐娜, 唐奇, 等. 含生物可降解聚酯纤维雪尼尔纱的染色性能[J]. 现代纺织技术, 2022, 30(5):188-196.
XU Tianwei, CHAI Luna, TANG Qi, et al. Research on the dyeing performance of chenille yarn containing biodegradable polyester fiber[J]. Advanced Textile Technology, 2022, 30(5):188-196.
[5] 李立新. 聚丁二酸丁二醇酯(PBS)纤维及其织物的染色性能研究[D]. 杭州: 浙江理工大学, 2021: 31.
LI Lixin. Study on dyeing properties of poly (butylene succinate) (PBS) fiber and fabric[D]. Hangzhou: Zhejiang Sci-Tech University, 2021: 31.
[6] 孙策, 吕闪闪, 张化腾, 等. 聚乳酸及其复合材料降解的研究进展[J]. 塑料, 2018, 47(6):114-117.
SUN Ce, LÜ Shanshan, ZHANG Huateng, et al. New advances in the degradation of polylactic acid based composite material[J]. Plastics, 2018, 47(6):114-117.
[7] 许建华, 关艳峰, 郑今欢. PLA纤维的染色动力学和热力学研究[J]. 浙江理工大学学报(自然科学版), 2008(6):644-648,666.
XU Jianhua, GUAN Yanfeng, ZHENG Jinhuan. Dyeing kinetics and thermodynamics of PLA Fiber[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2008(6):644-648,666.
[8] ZHANG Z H, XU Z Q, HUANG X X, et al. Dyeing processes of 100% bio-basedand degradable polylactide/poly(hydroxybutyrate-co-hydroxyvalerate) textiles[J]. Textile Research Journal, 2017, 87(17): 2066-2075.
doi: 10.1177/0040517516663158
[9] CHEN G Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry[J]. Chemical Society Reviews, 2009, 38(8):2434-1446.
doi: 10.1039/b812677c
[10] 王成龙, 李立新, 吴绍明, 等. 染色促进剂对聚丁二酸丁二醇酯纤维分散染料染色动力学和热力学的影响[J]. 纺织学报, 2022, 43(1):147-152.
WANG Chenglong, LI Lixin, WU Shaoming, et al. Effect of dye promoters on dyeing kinetics and thermodynamics of polybutylene succinate dyeing with disperse dye[J]. Journal of Textile Research, 2022, 43(1):147-152.
[11] 韩虎, 李伟婷, 魏会芳, 等. 酸性染料易染氨纶的染色动力学[J]. 纺织学报, 2019, 40(8):76-79.
HAN Hu, LI Weiting, WEI Huifang, et al. Dyeing kinetics of dyeable spandex fiber with acid dye[J]. Journal of Textile Research, 2019, 40(8):76-79.
[12] 韩春艳, 季轩, 李映, 等. 常压易染阳离子聚酯纤维染色动力学性能研究[J]. 针织工业, 2020(9):43-47.
HAN Chunyan, JI Xuan, LI Ying, et al. Study of the dyeing kinetics mechanism of easy cationic dye-able polyester fiber[J]. Knitting Industries, 2020(9):43-47.
[13] 汪慧春. PTT/PA6共混纤维的性能及染色研究[D]. 上海: 东华大学, 2007: 57-58.
WANG Huichun.Properties and dyeing of PTT/PA 6 blends[D]. Shanghai: Donghua University, 2007: 57-58.
[14] 武奇奇, 李敏, 刘怡宁, 等. 聚乳酸织物载体染色性能[J]. 纺织学报, 2019, 40(1):79-83,90.
WU Qiqi, LI Min, LIU Yining, et al. Dyeing properties of poly(lactic acid) fabric support[J]. Journal of Textile Rerearch, 2019, 40(1):79-83,90.
[15] AVINC O, BAKAN E, DEMIRCALI A. Dyeing of poly(lactic acid) fibres with synthesised novel heterocyclic disazo disperse dyes[J]. Coloration Technology, 2020, 136(4): 356-369.
doi: 10.1111/cote.v136.4
[16] LIPSA R, TUDORACHI N, DARIE-NITA RN, et al. Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride[J]. International Journal of Biological Macromolecules, 2016, 88:515-526.
doi: 10.1016/j.ijbiomac.2016.04.017 pmid: 27064086
[1] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[2] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[3] 艾丽, 朱亚伟. 液体分散染料研发技术现状及其应用前景[J]. 纺织学报, 2023, 44(05): 220-227.
[4] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[5] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[6] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[7] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[8] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[9] 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148.
[10] 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136.
[11] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[12] 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25.
[13] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[14] 何颖婷, 李敏, 付少海. 靛蓝分散体的制备及其还原-氧化过程[J]. 纺织学报, 2022, 43(04): 84-89.
[15] 周天博, 郑环达, 蔡涛, 于佐君, 王力成, 郑来久. 活性分散黄染料对涤纶/棉混纺织物的超临界CO2同浴染色[J]. 纺织学报, 2022, 43(03): 116-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!