纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 84-90.doi: 10.13475/j.fzxb.20220504801
姚琳涵1, 张颖1, 姚岚1, 郑晓萍2, 魏文达3, 刘成霞1,4,5()
YAO Linhan1, ZHANG Ying1, YAO Lan1, ZHENG Xiaoping2, WEI Wenda3, LIU Chengxia1,4,5()
摘要:
针对现有的刺绣风格模拟算法产生的图像细节不够精确,缺乏语义深度等缺点,提出了一种多尺度纹理合成的刺绣风格迁移模型(MTE-NST),该模型主要由生成网络和损失网络2部分组成,其中生成网络又包含内容匹配模块、结构增强模块和纹理精细模块。并通过引入多程式损失联合训练,分层迭代优化刺绣迁移图像,减少各个损失项对迁移效果的影响。结果表明:与现有卷积神经网络风格迁移算法对比,MTE-NST能生成更清晰的刺绣织线纹理和多方向的针脚轨迹,显著减少图片匹配错误产生的伪影,生成更逼真的刺绣艺术作品,本文研究结果有助于提高刺绣产品的外观仿真设计水平,促进刺绣技艺的发展及创新。
中图分类号:
[1] |
JING Y, YANG Y, FENG Z, et al. Neural style transfer: a review[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 26(11): 3365-3385.
doi: 10.1109/TVCG.2945 |
[2] |
ZHANG W, CAO C, CHEN S, et al. Style transfer via image component analysis[J]. IEEE Transactions on multimedia, 2013, 15(7): 1594-1601.
doi: 10.1109/TMM.2013.2265675 |
[3] |
DONG Y, TAN W, TAO D, et al. CartoonLoss GAN: learning surface and coloring of images for cartoon ization[J]. IEEE Transactions on Image Processing, 2021, 31: 485-498.
doi: 10.1109/TIP.2021.3130539 |
[4] |
ZHANG S, GAO X, WANG N, et al. Robust face sketch style synthesis[J]. IEEE Transactions on Image Processing, 2015, 25(1): 220-232.
doi: 10.1109/TIP.2015.2501755 |
[5] |
FU F, LV J, TANG C, et al. Multi-style Chinese art painting generation of flowers[J]. IET Image Processing, 2021, 15(3): 746-762.
doi: 10.1049/ipr2.v15.3 |
[6] | 郑锐, 钱文华, 徐丹, 等. 基于卷积神经网络的刺绣风格数字合成[J]. 浙江大学学报, 2019, 46(3): 270-278. |
ZHENG Rui, QIAN Wenhua, XU Dan, et al Digital synthesis of embroidery style based on convolutional neural network[J] Journal of Zhejiang University, 2019, 46 (3): 270-278. | |
[7] | QIAN W, CAO J, XU D, et al. CNN-based embroidery style rendering[J]. International Journal of PRAI, 2020, 34(14): 205-225. |
[8] | BEG M A, YU J Y. Generating embroidery patterns using image-to-image translation[EB/OL]. (2020-03-05) [2022-04-14]. https://arxiv.org/abs/2003.02909. |
[9] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image to image translation using cycle consistent adversarial networks[C]// 2017 Proceedings of the ICCV. Venice: IEEE, 2017: 2223-2232. |
[10] |
GUAN X, LUO L, LI H, et al. Automatic embroidery texture synthesis for garment design and display online[J]. The Visual Computer, 2021, 37(9): 2553-2565.
doi: 10.1007/s00371-021-02216-0 |
[11] | LI S, XU X, NIE L, et al. Laplacian-steered neural style transfer[C]// Proceeding of the 25th ACM International Conference on Multimedia. New York: Association for Computing Machinery, 2017: 1716-1724. |
[12] | RISSER E, WILMOT P, BARNES C. Stable and controllable neural texture synthesis and style transfer using histogram losses[EB/OL]. (2017-01-31) [2022-04-14] https://arxiv.org/abs/1701.08893. |
[13] |
GATYS L, ECHER A, BETHGE M. Neural algorithm of artistic style[J]. Journal of Vision, 2015, 16(12):326-336.
doi: 10.1167/16.12.326 |
[14] | ULYANOV D, LEBEDEV V, VEDALDI A, et al. Texture networks: feed-forward synthesis of textures and stylized images[C]// International Conference on Machine Learning. New York: ACM, 2016:1349-1357. |
[15] | LI C, WAND M. Combining markov random fields and convolutional neural networks for image synthesis[C]// 2016 Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016:2479-2486. |
[1] | 陈金文, 王鑫, 罗炜豪, 梅琛楠, 韦京艳, 钟跃崎. 面向虚拟现实的着装人体个性化头面部纹理生成技术[J]. 纺织学报, 2023, 44(09): 188-196. |
[2] | 刘锋, 徐杰, 柯文博. 基于深度强化学习的服装缝制过程实时动态调度[J]. 纺织学报, 2022, 43(09): 41-48. |
|