纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 31-38.doi: 10.13475/j.fzxb.20220504901

• 纤维材料 • 上一篇    下一篇

基于超临界CO2流体的载药二醋酸纤维释放行为

朱维维1, 施楣梧1,2, 龙家杰1()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.北京海淀第57离职干部休养所, 北京 100035
  • 收稿日期:2022-05-16 修回日期:2022-10-19 出版日期:2023-10-15 发布日期:2023-12-07
  • 通讯作者: 龙家杰(1970—),男,教授,博士。主要研究方向为基于超临界CO2流体技术的纤维材料染色及功能性纤维材料开发。E-mail:longjiajie@suda.edu.cn
  • 作者简介:朱维维(1989—),女,博士。主要研究方向为基于超临界CO2流体的功能性纺织品开发。

Release properties of drug-loaded diacetate fiber based on supercritical CO2 fluid

ZHU Weiwei1, SHI Meiwu1,2, LONG Jiajie1()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. Beijing Haidian No. 57 Retired Cadres Rest House, Beijing 100035, China
  • Received:2022-05-16 Revised:2022-10-19 Published:2023-10-15 Online:2023-12-07

摘要:

为获得具有良好缓释性能的生物活性二醋酸纤维,采用超临界CO2流体加工技术,并以具有抗氧化、抗菌功效的生物活性药物白藜芦醇作为模型药物,在不同流体温度及压力条件下制备负载白藜芦醇的二醋酸纤维,考察了不同载药二醋酸纤维在乙醇中的释放曲线,并建立释放模型。结果表明:更高超临界CO2流体温度、压力条件下制备的载药二醋酸纤维在介质中的绝对释放量、绝对释放速率均更高,而累计释放百分比、累计释放速率均更低;释放时间为40或50 min时,释放速率呈现升高现象,释放平衡时药物残留率最高可达50%;白藜芦醇从二醋酸纤维中的释放行为更符合一级释放动力学模型,拟合度R2在0.93以上。

关键词: 超临界CO2流体, 二醋酸纤维, 白藜芦醇, 绝对释放量, 缓释性能, 释放速率, 释放模型

Abstract:

Objective Diacetate fiber is endowed with skin care function, distinctly improve its added value. Compared to traditional manufacturing processes, the supercritical CO2 fluid technology (SCF-CO2) is green, efficient and environmentally friendly since it solubilizes and carries the drug directly to the substrate to fabricate drug-loaded polymer without any solvent residue. In order to achieve the function to nourish skin it is important for the skin care diacetate fiber with good properties to release bioactive drug. Therefore, the influences of supercritical CO2 fluid processing conditions on the release property of skin care diacetate fiber were investigated.

Method Resveratrol with antioxidant and antibacterial effects was utilized as the model drug. Resveratrol-loaded diacetate fiber was fabricated by SCF-CO2 under different temperatures and different pressures. The resveratrol-loaded diacetate fiber was placed in the release medium ethanol to investigate the effects of fluid temperature (70, 80, 90 ℃) and pressure (12, 16, 20 MPa) on the release amount and the release rate of resveratrol from resveratrol-loaded diacetate fiber for the build-up of the release models.

Results When the SCF-CO2 temperatures were 70, 80, 90 ℃ respectively, the loading capacity of resveratrol on diacetate fiber were 0.358 × 10-4, 0.884 × 10-4, 2.78 × 10-4 g/g. It was found that the higher processing temperature of SCF-CO2 resulted in the higher loading capacity. The absolute release amount and absolute release rate were increased along with the increasing loading capacity. The cumulative release percentage and the cumulative release rate were decreased when increasing SCF-CO2 temperature(Fig. 1(c), Fig. 1(d)). About 40% resveratrol was remained in diacetate fiber when the release was in equilibrium under 90 ℃ of SCF-CO2 temperature. When the releasing time was 40 min a rise for release rate was witnessed under 70, 80 ℃ of SCF-CO2 temperature(Fig. 1(b), Fig. 1(d)), but the release rate rise appeared under 90 ℃ of SCF-CO2 temperature 50 min into the release process. When the SCF-CO2 pressures were 12, 16, 20 MPa respectively, the loading capacity of resveratrol on diacetate fiber were 0.592 × 10-4, 0.884 × 10-4, 2.177 × 10-4 g/g. The higher processing pressure of SCF-CO2 also resulted in the higher loading capacity. The corresponding absolute release amount and absolute release rate were also increased with increasing loading capacity. But when the release time is less than 50 min the absolute release amount and absolute release rate were higher under 12 MPa of SCF-CO2 pressures. The cumulative release percentage and the cumulative release rate were decreased when increasing SCF-CO2 pressure(Fig. 2(c), Fig. 2(d)). About 50% resveratrol was remained in diacetate fiber when the release was in equilibrium under 20 MPa of SCF-CO2 pressure. When the releasing time was about 30 min or 40 min a rise for release rate appeared(Fig. 2(b), Fig. 2(d)). Compared to Higuchi model and Korsmeyer-Peppas model, the fitting degree of the first-order release model was the highest upon the release curve of resveratrol-loaded diacetate fiber (Fig. 3, Fig. 4), with R2 above 0.93.

Conclusion The absolute release amount and absolute release rate depend on the loading capacity of resveratrol on diacetate fiber positively. The higher processing temperature and the higher processing pressure of SCF-CO2 result in the higher loading capacity. The cumulative release percentage and the cumulative release rate show a downward trend with increasing SCF-CO2 temperature and pressure. The reason is that more resveratrol is penetrated into the interior of diacetate fiber under the swelling of SCF-CO2 to diacetate fiber. Moreover, the degree of swelling is strengthened with increasing SCF-CO2 temperature and pressure. As a result, a large amount of resveratrol is remained in the diacetate fiber when the release reaches equilibrium. The release behavior of resveratrol from diacetate cellulose is found more aligned with the first-order release kinetic model.

Key words: supercritical CO2 fluid, diacetate fiber, resveratrol, absolute release amount, slow release performance, release rate, release model

中图分类号: 

  • TS195.6

图1

不同流体温度下所制备负载白藜芦醇的二醋酸纤维的释放曲线"

图2

不同流体压力下所制备负载白藜芦醇的二醋酸纤维的释放曲线"

表1

超临界CO2流体不同温度下制备的载药二醋酸纤维的释放模型拟合参数"

超临界CO2流体条件 模型 拟合方程 R2
温度/℃ 压力/MPa 时间/min
一级释放模型 Q t = 94.48195 - 137.61919 e - t 22.21088 0.957 1
70 16 90 Higuchi模型 Q t = 5.50698 t 0.5 + 24.7621 0.598 4
Korsmeyer-Peppas模型 Q t = 19.91 t 0.30693 0.666 4
一级释放模型 Q t = 77.78347 - 76.86149 e - t 34.51403 0.961 3
80 16 90 Higuchi模型 Q t = 4.2034 t 0.5 + 22.6159 0.759 9
Korsmeyer-Peppas模型 Q t = 17.0509 t 0.29449 0.819 9
一级释放模型 Q t = 61.40277 - 73.0486 e - t 31.09313 0.935 4
90 16 90 Higuchi模型 Q t = 3.77237 t 0.5 + 12.4559 0.716 5
Korsmeyer-Peppas模型 Q t = 10.787 t 0.33865 0.763 3

图3

不同流体温度下所制备负载白藜芦醇的二醋酸纤维的释放拟合曲线"

表2

超临界CO2流体不同压力下制备的载药二醋酸纤维的释放模型拟合参数"

超临界CO2流体条件 模型 拟合方程 R2
压力/MPa 温度/℃ 时间/min
一级释放模型 Q t = 92.15555 - 117.12663 e - t 14.15604 0.996 3
12 80 90 Higuchi模型 Q t = 2.99614 t 0.5 + 55.2169 0.443 8
Korsmeyer-Peppas模型 Q t = 41.1273 t 0.16298 0.587 4
一级释放模型 Q t = 78.27327 - 75.31915 e - t 38.38758 0.976 9
16 80 90 Higuchi模型 Q t = 4.34581 t 0.5 + 20.5399 0.797 9
Korsmeyer-Peppas模型 Q t = 15.8132 t 0.30852 0.850 2
一级释放模型 Q t = 52.02342 - 49.418 e - t 95.49074 0.966 4
20 80 90 Higuchi模型 Q t = 3.46378 t 0.5 - 2.2767 0.968 5
Korsmeyer-Peppas模型 Q t = 2.88938 t 0.52472 0.965 4

图4

不同流体压力下所制备负载白藜芦醇的二醋酸纤维的释放拟合曲线"

[1] 韩娅红, 何艳芬, 孟家光. 新型护肤保健纤维: 芦荟纤维[J]. 合成纤维, 2011, 40(5): 26-27.
HAN Yahong, HE Yanfen, MENG Jiaguang. A new fiber for skin protection: aloe fiber[J]. Synthetic Fiber in China, 2011, 40(5): 26-27.
[2] 李延妍. 氨基酸可释放材料的机理及制备[D]. 大连: 大连工业大学, 2014: 27-35.
LI Yanyan. The mechanism and preparation of amino acid released material[D]. Dalian: Dalian Polytechnic University, 2014: 27-35.
[3] 沈国先. 珍珠真丝纤维护肤内衣用品的研究开发[J]. 现代纺织技术, 2009, 17(4): 27.
SHENG Guoxian. Research and development of skin care underwear products processed by pearl silk fiber[J]. Advanced Textile Technology, 2009, 17(4): 27.
[4] 陈翠翠. 草珊瑚粘胶纤维的制备及其性能的研究[D]. 青岛: 青岛大学, 2011: 37-52.
CHEN Cuicui. Study on property of the fiber made from the Sarcandra glabra extracts and rayon cellulose[D]. Qingdao: Qingdao University, 2011: 37-52.
[5] 韩倩. 红花活性物提取及与纤维素共混制备功能性纤维工艺研究[D]. 郑州: 中原工学院, 2013: 29-31.
HAN Qian. Study on safflower activity extraction and the technology of preparing functional fiber with cellulose by blending[D]. Zhengzhou: Zhongyuan University of Technology, 2013: 29-31.
[6] 代国亮. 聚酯纤维及织物的电子束辐照改性[D]. 上海: 东华大学, 2015: 45-46.
DAI Guoliang. The modification of ployester fiber and fabric using electron beam irradiation[D]. Shanghai: Donghua University, 2015: 45-46.
[7] YAO G P, ZHENG J H. Application of vitamin E microcapss on textiles[J]. Advanced Materials Research, 2012, 441: 61-265.
doi: 10.4028/www.scientific.net/AMR.441
[8] AZIZ A, JAI F R, RASLAN J, et al. Microencapsulation of essential oils application in textile: a review[J]. Advanced Materials Research, 2015, 1113: 346-351.
doi: 10.4028/www.scientific.net/AMR.1113
[9] ZHU W W, SHI W, SHI M W, et al. Solubility and loading ability of benzene derivative drugs onto viscose substrate in supercritical carbon dioxide and their release behavior in solvent[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2020.120200.
[10] 余金鹏. 超临界溶液浸渍法制备缓控释给药系统[D]. 杭州: 浙江大学, 2012: 107.
YU Jinpeng. Preparation of sustained-/controlled-release drug delivery system using supercritical solution impregnation[D]. Hangzhou: Zhejiang University, 2012: 107.
[11] 朱维维. 超临界CO2流体中药物在纤维上的负载及其缓释行为研究[D]. 上海: 东华大学, 2020: 44-82.
ZHU Weiwei. Investigation of the loading abilities of drugs on substrate fibers in supercritical CO2 fluid and their release behaviors in solvent[D]. Shanghai: Donghua University, 2020: 44-82.
[12] 何建新, 唐予远, 王善元. 醋酸纤维素的结晶结构与热性能[J]. 纺织学报, 2008, 29(10): 12-16.
HE Jianxin, TANG Yuyuan, WANG Shanyuan. Crystalline structure and thermal property of cellulose acetate[J]. Journal of Textile Research, 2008, 29(10): 12-16.
[13] FU Y, KAO W J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems[J]. Expert Opinion on Drug Delivery, 2010, 7(4): 429-444.
doi: 10.1517/17425241003602259
[14] HINES D J, KAPLAN D L. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights[J]. Critical Reviews in Therapeutic Drug Carrier Systems, 2013, 30(3): 257-276.
doi: 10.1615/critrevtherdrugcarriersyst.2013006475 pmid: 23614648
[15] 张雯. 基于胶原蛋白/细菌纤维素多孔微球的制备及药物吸附释放行为研究[D]. 西安: 陕西科技大学, 2019: 18-19.
ZHANG Wen. Preparation of porous microspheres based on collagen/bacterial cellulose and its drug adsorption/release behavior[D]. Xi'an: Shanxi University of Science and Technology, 2019: 18-19.
[1] 朱维维, 龙家杰, 施楣梧. 粘胶织物中烟酰胺的释放曲线及其模型拟合[J]. 纺织学报, 2023, 44(03): 139-146.
[2] 朱维维, 管丽媛, 龙家杰, 施楣梧. 超临界CO2流体处理时间对二醋酯纤维结构与性能的影响[J]. 纺织学报, 2021, 42(12): 97-102.
[3] 朱维维, 蔡冲, 张聪, 龙家杰, 施楣梧. 超临界CO2处理温度对二醋酸纤维结构与性能的影响[J]. 纺织学报, 2020, 41(03): 8-14.
[4] 郭新月, 杨占平, 宋晓梅, 徐阳. 正二十烷/醋酸纤维素相变过滤材料的制备及其性能[J]. 纺织学报, 2019, 40(09): 15-21.
[5] 刘来俊, 徐海燕, 赵帆, 王富军, 王璐. 紫外-可见分光光度法在定量监测2,3,5-三碘苯甲酸缓释中的应用[J]. 纺织学报, 2019, 40(02): 20-25.
[6] 叶晋浦 朱庆松 李晓俊 肖长发. 二醋酸纤维素与増塑剂熔融体系的制备与表征[J]. 纺织学报, 2016, 37(09): 6-11.
[7] 于勤 王强 范雪荣. 二醋酸纤维素纤维纺丝溶液的挤出胀大行为[J]. 纺织学报, 2015, 36(04): 7-10.
[8] 于勤 张丽 曹建华 郭叶书 王强 范雪荣. 二醋酸纤维素纤维纺丝溶液流变性能[J]. 纺织学报, 2013, 34(6): 8-12.
[9] 于勤 张丽 曹建华 王强 范雪荣. 二醋酸纤维素纤维纺丝溶液的动态黏弹性[J]. 纺织学报, 2013, 34(3): 5-8.
[10] 牛建设;蔡玉兰. 二醋酸纤维的动态力学性能[J]. 纺织学报, 2008, 29(9): 20-22.
[11] 何建新;唐予远;王善元. 醋酸纤维素的结晶结构与热性能[J]. 纺织学报, 2008, 29(10): 12-16.
[12] 杨文芳;王雷. 超临界CO2在PLA纤维染色中的应用[J]. 纺织学报, 2007, 28(10): 59-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!