纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 88-95.doi: 10.13475/j.fzxb.20220505501

• 纺织工程 • 上一篇    下一篇

基于多尺度模型的编织复合材料圆管扭转行为有限元模拟

谷元慧1,2, 王曙东1, 张典堂2()   

  1. 1.盐城工业职业技术学院, 江苏 盐城 224005
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2022-12-17 修回日期:2023-09-04 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 张典堂(1986—),男,研究员,博士。主要研究方向为纺织结构复合材料。E-mail: zhangdiantang@jiangnan.edu.cn
  • 作者简介:谷元慧(1993—),女,硕士。主要研究方向为纺织结构复合材料。
  • 基金资助:
    盐城工业职业技术学院自然科学项目(ygy2005);江苏省高等学校自然科学研究面上项目(21KJB540007);盐城市科技计划专项资金(基础研究计划)项目(YCBK2023019)

Finite element simulation of torsion behavior of braided composite tube based on multi-scale model

GU Yuanhui1,2, WANG Shudong1, ZHANG Diantang2()   

  1. 1. Yancheng Polytechnic College, Yancheng, Jiangsu 224005, China
    2. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2022-12-17 Revised:2023-09-04 Published:2023-12-15 Online:2024-01-22

摘要:

为进一步探究编织复合材料圆管在扭转加载过程中的力学响应,在前期试验研究的基础上,以具有45° 编织角的碳纤维/树脂复合材料圆管为例,采用了综合考虑圆管的细观结构和全尺寸模拟计算成本的多尺度方法构建了编织复合材料圆管有限元模型,系统模拟了其扭转加载过程,并分别讨论了圆管单胞的剪切和圆管的扭转渐进损伤过程。结果表明:模拟结果与试验结果具有较高的一致性;圆管单胞在剪切失效之前的损伤分布基本呈对称状态,纤维束早于基体形成损伤,承担主要载荷;纤维束编织路径对圆管的扭转损伤扩展有一定的影响,从损伤出现至结构完全失效的用时很短,损伤单元在扭转加载末期产生于圆管中部,并沿纤维束编织路径扩展,最终形成空间螺旋型损伤剪切带。

关键词: 编织复合材料圆管, 多尺度模型, 有限元模拟, 扭转, 渐进损伤

Abstract:

Objective The mechanical properties of braided composites affect the scope of their applications. However, due to the complexity of the meso-structure of braided composites, the experimental research alone can no longer meet the further exploration of the mechanical properties of braided composites. To further investigate the mechanical response of braided composite tube under torsion loading, it is necessary to establish a finite element model of braided composite tube, which can well reflect the mechanical response state and has low calculation cost.
Method On the basis of previous research, a carbon fiber/resin braided composite tube with a 45° braiding angle was selected as a representative research object. Taking into account the meso-structure and full-scale simulation calculation cost, a finite element model of the braided composite tube based on real size was constructed using a micro-meso-macro multi-scale method, and its torsional loading process was systematically simulated. The torsion loading process of the braided composite tube was systematically simulated, and the shear progressive damage of the unit cell and the torsion progressive damage of the tube were discussed separately. The effectiveness of the established model was verified by comparing simulation results with experimental results.
Results The simulation results indicated that under XY shear loading, the damage of a braided composite tube unit cell generated first at the weak point where the braided fiber bundles interweave around the unit cell before the damage failure of the unit cell. The damage area was symmetrically distributed (Fig. 4). When shear failure generated in the unit cell, the fiber bundle showed significant delamination, which was consistent with the observed phenomenon of fiber separation towards both sides in the fractured fiber bundle in the experimental SEM image (Fig. 5). The torsion loading with an angular velocity of 30(°)/min was applied to the finite element model. The torque-twist angle curves and macroscopic failure morphologies obtained from experiments and simulations showed high consistency. These two cases showed that the model was accurate and effective (Fig. 7). The braided composite tube exhibited brittle fracture characteristics under torsion loading. The overall bearing capacity was stronger in the early stage, and damage elements only generated in the middle of the tube at the end of loading. The tube took only about 3.2 s from the appearance of damage to its structural failure. At the beginning, the composite tube was subjected to torsional force. At this point, the composite tube structure undergone load distribution again as a whole. Until 36.202 s, the middle area of the braided tube reaches the bearing limit due to a small amount of fibers and matrix, forming a damage unit. As the loading progressed, the damage diffused around the tube wall towards both ends of the tube at approximately 45° to the axial direction, which was basically consistent with the fiber bundle space braiding path. At 39.418 s, the braided composite material tube reached its load-bearing limit and the braided tube structure failed. At the same time, finally formed a clear space spiral shear band damage morphology on the surface of the tube (Fig. 8).
Conclusion The finite element model of braided composite tubes constructed based on multi-scale methods can effectively reflect the torsional mechanical response state of the tubes. The spatial braiding path of fiber bundles with impact on the torsional damage propagation of braided composite tubes, which means that the mechanical properties of braided composite tubes can be further optimized by adjusting the braiding path.

Key words: braided composite tube, multi-scale model, finite element simulation, torsion, progressive damage

中图分类号: 

  • TB332

表1

T700-12K碳纤维性能参数"

线密度/
tex
df/
μm
E f 11/
MPa
E 22 f E 33 f/
MPa
v 12 f v 23 f G 12 f/
MPa
G 23 f/
MPa
Tf/
MPa
Cf/
MPa
800 7 232 000 14 000 0.25 0.3 24 000 5 000 4 850 2 740

表2

E-51树脂性能参数"

ρm/(g·cm-3) Em/
MPa
vm Gm/
MPa
Tm/
MPa
Cm/
MPa
Sm/
MPa
1.18 3 000 0.35 890 800 240 60

表3

浸胶纤维束工程弹性常数"

E11/
MPa
E22
E33/MPa
v12v13 v23 G12
G13/MPa
G23/
MPa
150 930 8 140 0.285 0.32 3 940 2 620

表4

浸胶纤维束的强度预测结果"

XT YT XC YC S12 S23
3 130 60.18 1 600 204.55 50.89 43.412

图1

单胞结构模型的建立"

表5

单胞几何尺寸参数"

Lcell Lz Tcell Wf Tf
5.09 0.1 0.6 3.5 0.26

图2

单胞网格划分"

图3

单胞的材料方向定义"

表6

单胞刚度预测"

E 1 u c/MPa E 2 u c/MPa E 3 u c/MPa v 12 u c v 13 u c v 23 u c G 12 u c/MPa G 13 u c/MPa G 23 u c/MPa
9 592.99 9 593.24 6 824.67 0.792 0.094 0.094 19 383.37 238.88 238.65

表7

单胞强度预测结果"

X T u c Y T u c X C u c Y C u c Suc
73.13 73.13 80.21 80.21 231.91

图4

XY向剪切载荷下的损伤演化"

图5

纤维束分层开裂"

图6

网格划分及边界条件"

图7

扭转试验结果与模拟结果对比"

图8

扭转损伤演变"

[1] QI Y Y, GU B H, SUN B Z, et al. Full-field strain and temperature evolution of electroactive three-dimensional braided thermoplastic shape memory composites[J]. Composites Science & Technology, 2022, 219: 1-9.
[2] 万振凯, 贾敏瑞, 包玮琛, 等. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(9): 71-82.
WAN Zhenkai, JIA Minrui, BAO Weichen, et al. Optimal configuration of embedded position and number of carbon nanotube yarns in 3-D braided composites[J]. Journal of Textile Research, 2021, 42(9): 71-82.
[3] ZHOU W, WEI Z Y, WANG G F, et al. Transverse tensile deformation and failure of three-dimensional five-directional braided carbon fiber composites[J]. Fibers and Polymers, 2021(4): 1099-1110.
[4] 赵思钰, 温卫东, 周喻. 基于三胞模型的2.5D编织复合材料力学性能研究[J]. 材料导报, 2021, 35(22): 22178-22192, 22199.
ZHAO Siyu, WEN Weidong, ZHOU Yu. Investigation of mechanical properties of 2.5D braided composites based on triple-cell model[J]. Materials Report, 2021, 35(22): 22178-22192, 22199.
[5] ZHANG D, ZHENG X T, WANG Z B, et al. Effects of braiding architectures on damage resistance and damage tolerance behaviors of 3D braided composites[J]. Composite Structures, 2020. DOI:10.1016/j.compstruct.2019.11565.
[6] 谭焕成, 许善迎, 黄雄, 等. 三维四向编织复合材料宏观有限元模型冲击损伤仿真及试验验证[J]. 复合材料学报, 2018, 35(5): 1139-1148.
TAN Huancheng, XU Shanying, HUANG Xiong, et al. Macro scale finite element model for impact damage simulation and experimental verification of three dimensional four directional braided composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1139-1148.
[7] ZHANG C, CURIEL-SOSA J L, BUI T Q. Meso-scale finite element analysis of mechanical behavior of 3D braided composites subjected to biaxial tension loadings[J]. Applied Composite Materials, 2019, 26(1): 139-157.
[8] WANG H, GU B H, SUN B Z. Finite element analyses on longitudinal compressive behaviors of 3D braided carbon/epoxy composite with different braided angles at low temperature[J]. Journal of The Textile Institute, 2019(1): 37-49.
[9] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4-and 5-directional 3-D braided composites[J]. Journal of Textile Research, 2020, 41(10): 67-73.
[10] CHAMIS C C. Mechanics of composite materials past, present and future[J]. Journal of Composites Techno-logy & Research, 1984, 11(1): 3-14.
[11] CHAMIS C C. Simplified composite micromechanics equations for strength, fracture toughness and environmental effects[J]. Sampe Quarterly-Society for the Advancement of Material and Process Engineering, 1984, 15(4): 41-55.
[12] LIU X D, ZHANG D T, SUN J, et al. Refine reconstruction and verification of meso-scale modeling of three-dimensional five-directional braided composites from X-ray computed tomography data[J]. Composite Structures, 2020. DOI:10.1016/j.compstruct.2020.
[13] XIA Z H, ZHOU C W, YONG Q L, et al. On selection of repeated unit cell model and application of analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266-278.
[14] HASHIN Z. Failure criteria for unidirectional fiber composite[J]. Journal of Applied Mechanics, 1980, 47: 329-334.
[15] MURAKAMI S. Mechanical modeling of material damage[J]. Journal of Applied Mechanics, 1988, 55: 280-286.
[16] GU Y H, ZHANG D T, ZHANG Z W, et al. Torsion damage mechanisms analysis of two-dimensional braided composite tubes with digital image correction and X-ray micro-computed tomography[J]. Composite Structures, 2021, 256:1-11.
[17] KOLPAKOV A G, RAKIN S I. Homogenized strength criterion for composite reinforced with orthogonal systems of fibers[J]. Mechanics of Materials, 2020, 148:1-7.
[1] 俞旭良, 丛洪莲, 孙菲, 董智佳. 仿猪笼草口缘结构功能针织物的设计与应用[J]. 纺织学报, 2023, 44(07): 72-78.
[2] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[3] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[4] 刘雪艳, 蒋高明. 基于ABAQUS的运动压力袜编织尺寸预测[J]. 纺织学报, 2022, 43(06): 79-85.
[5] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[6] 黄耀丽, 吕丽华, 王观桔. 工字形三维机织复合材料的弯曲性能[J]. 纺织学报, 2019, 40(04): 66-71.
[7] 刘倩楠 刘新金. 采用ABAQUS的粘胶机织物拉伸力学性能仿真[J]. 纺织学报, 2018, 39(09): 39-43.
[8] 陈莹 魏静 马俊淑. 叠褶在服装造型中的应用[J]. 纺织学报, 2018, 39(05): 97-102.
[9] 陈扬 杨允出 张艺强 范艳娟 金艳苹. 电加热服装中加热片与织物组合体的稳态热传递模拟[J]. 纺织学报, 2018, 39(05): 49-55.
[10] 吕丽华 黄耀丽 崔婧蕊. 蜂窝状三维整体机织复合材料的弯曲性能及其有限元模拟[J]. 纺织学报, 2017, 38(11): 56-60.
[11] 崔红 高秀丽 林洪芹 高大伟 吕立斌. 纤维力学性能对自捻纱线自捻程度的影响[J]. 纺织学报, 2016, 37(06): 32-35.
[12] 卢子兴 周原 陈明阳 夏彪. 用于缎纹机织复合材料力学行为数值模拟的新单胞模型[J]. 纺织学报, 2014, 35(5): 40-0.
[13] 罗以喜. 双向载荷下双轴向经编柔性复合材料有限元模拟[J]. 纺织学报, 2011, 32(12): 60-63.
[14] 薛文良;魏孟媛;陈革;程隆棣. 纱线结构中纤维形态的数学表征[J]. 纺织学报, 2010, 31(5): 30-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!