纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 1-8.doi: 10.13475/j.fzxb.20220506001

• 纤维材料 •    下一篇

基于均三嗪环结构的聚己内酰胺6复合树脂制备及其抗熔滴阻燃特性

张文琪1,2, 李莉莉1,2, 胡泽旭1, 魏丽菲3, 相恒学1,2(), 朱美芳1,2   

  1. 1.东华大学 纤维材料改性国家重点实验室, 上海 201620
    2.东华大学 材料科学与工程学院, 上海 201620
    3.上海德福伦新材料科技有限公司, 上海 201502
  • 收稿日期:2022-05-19 修回日期:2022-12-09 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 相恒学(1984—),男,副研究员,博士。主要研究方向为聚合物纤维。E-mail:hengxuexiang@dhu.edu.cn
  • 作者简介:张文琪(1996—),女,硕士。主要研究方向为阻燃聚酰胺纤维。
  • 基金资助:
    国家自然科学基金项目(52003042);国家自然科学基金项目(52073047);上海市优秀技术带头人计划项目(20XD1433700);上海市“一带一路”国际合作项目(20520740800);教育部“创新团队发展计划”滚动支持项目(IRT16R13)

Preparation method of and anti-dripping and flame retardant properties of polycaprolactam 6 composite resin based on homotriazine ring structure

ZHANG Wenqi1,2, LI Lili1,2, HU Zexu1, WEI Lifei3, XIANG Hengxue1,2(), ZHU Meifang1,2   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Material, Donghua University, Shanghai 201620, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. Shanghai Defulun New Material Technology Co., Ltd., Shanghai 201502, China
  • Received:2022-05-19 Revised:2022-12-09 Published:2023-11-15 Online:2023-12-25

摘要:

针对聚己内酰胺6(PA6)高温氧化诱导分子链断裂产生的持续燃烧和熔体滴落等问题,利用均三嗪环阻燃剂(CFA)的膨胀成炭性质,采用熔融共混方式得到阻燃抗熔滴PA6复合树脂,分析了CFA阻燃剂的成炭性能,研究了添加不同质量分数CFA阻燃剂的PA6复合树脂的阻燃性能与燃烧后残炭的结构及形貌。结果表明:当CFA质量分数为8%时,阻燃抗熔滴PA6复合树脂的垂直燃烧等级达到V-0级,点燃后仅燃烧1 s即熄灭,熔滴滴落1滴;阻燃抗熔滴PA6复合树脂极限氧指数从纯PA6的24.5%提升到33.4%,总烟释放量下降13.3%;受阻燃剂高温残炭量高的影响,随着CFA质量分数的增加,在空气氛围中,残炭量从纯PA6的1.87%提高到4.84%;CFA诱导PA6阻燃机制为气相中的不燃性气体的稀释效应以及凝聚相中炭层的阻隔效应;CFA阻燃剂的加入并未导致PA6拉伸断裂强度下降,反而使其有所提升,CFA质量分数为8%时,PA6复合树脂的拉伸断裂强度提升28.8%。

关键词: 聚己内酰胺6, 阻燃改性, 抗熔滴, 均三嗪环, 成炭性能, 熔融共混

Abstract:

Objective Polycaprolactam 6 (PA6) is a polymer material widely used in daily life, but it is flammable. High-temperature oxidation during combustion process would cause its molecular chain to break, resulting in problems such as continuous combustion and melt dripping. At present, charring technology has become an important means to solve these problems. The homotriazine ring flame retardant has excellent charring performance by virtue of its conjugated stable structure, which has greatest potential to solve the problem of PA6 flame retardant.

Method Triazine flame retardant forms a carbon layer on the polymer surface to resist the further combustion of flame, hence improving the flame retardancy of PA6. Triazine ring structure also has certain structural compatibility with PA6 molecular chain, which would not affect the processing and mechanical properties of PA6. Therefore, homotriazine ring flame retardant (CFA) was added to PA6 by melt blending to improve the flame retardancy of PA6. The charring performance of the PA6 composite resin was studied through the thermal experiment. By examining the limiting oxygen index, vertical combustion and cone calorimetry experiment, the influence on the flame retardant and charring property on PA6 resin was studied, which was used for explaining the mechanism of the CFA flame retardant.

Results In this research, a series of composite resin were prepared by melt blending CFA flame retardant and PA6. After adding 8% CFA flame retardant to PA6 resin, the vertical combustion rating reached V-0 level, the limiting oxygen index increased from 24.5% to 33.4% (Tab. 1 and Fig. 2), and the total smoke release decreased by 13.3% (Fig. 3), suggesting the effectiveness of CFA in many aspects. The charring rate of CFA flame retardant itself in the air atmosphere reached 8.3%, and the charring rate of PA6 composite resin after adding 10% CFA was more than twice that of pure PA6, from 1.87% to 4.84% (Fig. 4), because of better isolation to oxygen and heat. By analyzing the four decomposition processes of CFA flame retardants in a nitrogen gasatmosphere, it was found that the charring performance of CFA was mainly by virtue of the tertiary nitrogen structure contained, and a stable carbon layer were be formed during the high-temperature process, thereby improving the high-temperature formation of the composites (Fig. 5). In order to understand the effectiveness of the flame retardant carbon structure, the structure of residual carbon and the composition of decomposition gas were analyzed. Compared with the carbon layer formed by the series of PA6 samples, it was revealed that the addition of CFA made the carbon layer rougher. When the mass fraction of CFA reaches more than 8%, the carbon layer began to become smooth again, facilitating effective protection to the internal PA6, thereby improving heat insulation and dripping resistance of PA6 composite resin (Fig. 6). The gas phase flame retardant mechanism was also found playing a role in improving the flame retardancy of PA6 resin (Fig. 8). Based on the above analysis, it was believed that good flame retardancy of PA6 composite resin is mainly because of the dilution effect of non-combustible gases in the gas phase and the barrier effect of the carbon layer in the condensed phase in the combustion process. The addition of CFA flame retardant did not lead to a decrease in the tensile break strength of PA6, but rather improved it. When the mass fraction of CFA was 8%, the tensile break strength of PA6 composite resin increased by 28.8%.

Conclusion After studying the performance of flame retardant PA6, It was found that CFA greatly increased the limiting oxygen index and vertical combustion of flame retardant PA6, and decreased smoke emission. CFA flame retardant can also improve the smoke suppression effect of PA6 to a certain extent, and enhance the tensile strength of PA6, greatly expanding the application range of PA6. The experimental results also verified the good compatibility between CFA and PA6 molecular chains. The research on PA6 flame retardant mechanism needs be further studied to improve the flame retardancy of PA6.

Key words: polycaprolactam 6, flame retardant modification, dripping resistant, homotriazine ring, charring performance, melt blending

中图分类号: 

  • TQ342

图1

PA6和PA6/CFA8的垂直燃烧图"

表1

垂直燃烧的测试结果"

样品名称 t1/s t2/s 是否点燃
脱脂棉
熔滴 UL-94
等级
PA6 40 3 ☆☆☆☆☆ V-2
PA6/CFA2 2 3 ☆☆ V-2
PA6/CFA4 1 2 ☆☆ V-2
PA6/CFA6 0 2 ☆☆ V-2
PA6/CFA8 0 1 V-0
PA6/CFA10 0 1 V-0

图2

阻燃PA6的极限氧指数"

图3

阻燃PA6的锥形量热测试结果"

图4

阻燃PA6在N2和空气中的TG曲线"

图5

阻燃剂CFA在N2和空气中的TG和DTG曲线"

图6

阻燃处理前后PA6残炭的扫描电镜照片(×100 000)"

图7

阻燃处理前后PA6残炭的拉曼光谱图"

图8

阻燃处理前后PA6在450 ℃下的气相色谱-质谱曲线"

图9

阻燃PA6的燃烧过程示意图"

图10

阻燃处理前后PA6的拉伸断裂强度"

[1] LI Lili, CHEN Shaohua, MA Wujun, et al. A novel reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO) hybrid composite and its flame-retardant application for polyamide 6[J]. Express Polymer Letters, 2014, 8(6): 450-457.
doi: 10.3144/expresspolymlett.2014.48
[2] ZHOU Jialiang, WANG Qianqian, JIA Chao, et al. Molecular weight discrete distribution-induced orientation of high-strength copolyamide fibers: effects of component proportion and molecular weight[J]. Macromolecules, 2021, 54: 7529-7539.
doi: 10.1021/acs.macromol.1c00915
[3] MA Jiajia, ZHANG Nan, CHENG Ying, et al. Green fabrication of multifunctional three-dimensional superabsorbent nonwovens with thermo-bonding fibers[J]. Advanced Fiber Materials, 2022, 4: 293-304.
doi: 10.1007/s42765-021-00108-5
[4] MA Kun, LI Bin, XU Miaojun. Simultaneously improving the flame retardancy and mechanical properties for polyamide 6/aluminum diethylphosphinate composites by incorporating of 1,3,5-triglycidyl isocyanurate[J]. Polymers for Advanced Technologies, 2018, 29(3): 1068-1077.
doi: 10.1002/pat.v29.3
[5] PAN Weinan, ZHOU Jialiang, XIANG Hengxue, et al. Melt-spun industrial super-strong polycaprolactam fiber: effects of tie-molecules and crystal transformation[J]. Composites Part B: Engineering, 2020. DOI:10.1016/j.compositesb.2020.107772.
[6] XIANG Hengxue, LI Lili, CHEN Wei, et al. Flame retardancy of polyamide 6 hybrid fibers: combined effects of α-zirconium phosphate and ammonium sulfamate[J]. Progress in Natural Science: Materials International, 2017, 27(3): 369-373.
doi: 10.1016/j.pnsc.2017.04.013
[7] CAI Jianan, WIRASAPUTRA Alvianto, ZHU Yaming, et al. The flame retardancy and rheological properties of PA6/MCA modified by DOPO-based chain extender[J]. RSC Advances, 2017, 7(32): 19593-19603.
doi: 10.1039/C6RA28293H
[8] WIRASAPUTRA Alvianto, ZHENG Lijun, LIU Shumei, et al. High-performance flame-retarded polyamide-6 composite fabricated by chain extension[J]. Macromolecular Materials and Engineering, 2016, 301(5): 614-624.
doi: 10.1002/mame.v301.5
[9] 陈咏, 王颖, 何峰, 等. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019, 40(10): 13-19.
CHEN Yong, WANG Ying, HE Feng, et al. Kinetics and properties of phosphorus flame retardant copolymerized polyester[J]. Journal of Textile Research, 2019, 40(10): 13-19.
[10] TOMIAK Florian, SCHOEFFEL Angelina, RATHBERGER Klaus, et al. Expandable graphite, aluminum diethylphospinate and melamine polyphosphate as flame retarding system in glass fiber-reinforced PA6[J]. Polymers, 2022. DOI: 10.3390/polym14061263.
[11] XU Miaojun, LIU Haichao, MA Kun, et al. New strategy towards flame retardancy through design, synthesis, characterization, and fire performance of a chain extender in polyamide 6 composites[J]. Polymer Engineering & Science, 2018, 10: 206-215.
[12] NI Yanpeng, LI Qitian, CHEN Lin, et al. Semi-aromatic copolyesters with high strength and fire safety via hydrogen bonds and π-π stacking[J]. Chemical Engineering Journal, 2019, 374: 694-705.
doi: 10.1016/j.cej.2019.05.212
[13] 孙晨颖, 王文庆, 靳高岭, 等. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(6): 171-179.
SUN Chenying, WANG Wenqing, JIN Gaoling, et al. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior[J]. Journal of Textile Research, 2021, 42(6): 171-179.
[14] 文玉峰, 马晓谱, 盛方园, 等. 微胶囊化膨胀型阻燃剂的制备及其在聚乳酸中的应用[J]. 纺织学报, 2021, 42(6): 71-77.
WEN Yufeng, MA Xiaopu, SHENG Fangyuan, et al. Preparation of microencapsulated intumescent flame retardant and its use in polylactic acid[J]. Journal of Textile Research, 2021, 42(6): 71-77.
[15] LI Yuchun, WANG Jinzhao, XUE Boqiong, et al. Enhancing the flame retardancy and UV resistance of polyamide 6 by introducing ternary supramolecular aggregates[J]. Chemosphere, 2022. DOI: 10.1016/j.chemosphere.2021.132100.
[16] LI Xiang. Influence of melamine cyanurate and boehmite on flame retardancy of PA6[J]. Iranian Polymer Journal, 2022, 31(6): 1-7.
doi: 10.1007/s13726-022-01020-4
[17] FENG Haisheng, LI Dinghua, CHENG Bo, et al. A cross-linked charring strategy for mitigating the hazards of smoke and heat of aluminum diethylphosphonate/polyamide 6 by caged octaphenyl polyhedral oligomeric silsesquioxanes[J]. Journal of Hazardous Materials, 2022. DOI: 10.1016/j.jhazmat.2021.127420.
[18] WU Jianing, CHEN Lin, FU Teng, et al. New application for aromatic Schiff base: high efficient flame-retardant and anti-dripping action for polyesters[J]. Chemical Engineering Journal, 2018, 336: 622-632.
doi: 10.1016/j.cej.2017.12.047
[19] YAN Chun, YAN Pengwei, XU Haibing, et al. Preparation of continuous glass fiber/polyamide 6 composites containing hexaphenoxycyclotriphosphazene: mechanical properties, thermal stability, and flame retardancy[J]. Polymer Composites, 2021, 43(2): 1022-1037.
doi: 10.1002/pc.v43.2
[1] 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160.
[2] 肖云超, 杨雅茹, 郭健鑫, 王童谣, 田强. 高温自交联抗熔滴阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 151-159.
[3] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[4] 李宝洁, 朱元昭, 钟毅, 徐红, 毛志平. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112.
[5] 金文杰, 程献伟, 关晋平, 陈国强. 聚酰胺6织物的磺胺阻燃抗熔滴整理[J]. 纺织学报, 2022, 43(02): 171-175.
[6] 徐英俊, 王芳, 倪延朋, 陈琳, 宋飞, 王玉忠. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(02): 1-9.
[7] 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48.
[8] 孙晨颖, 王文庆, 靳高岭, 王锐. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(06): 171-179.
[9] 任元林, 姜丽娜, 霍同国, 田甜. 聚丙烯腈纤维阻燃改性研究进展[J]. 纺织学报, 2019, 40(08): 181-188.
[10] 李晓川, 瞿芊芊, 李旭明. 熔融纺聚乳酸/聚丙烯纤维的制备及其性能[J]. 纺织学报, 2019, 40(03): 8-12.
[11] 梁超 胡春艳 阎克路 朱晓敏 THOMAS Helga. 熔融静电纺聚丙烯纤维的亲水改性[J]. 纺织学报, 2016, 37(10): 13-18.
[12] 田政 潘莉莎 陈龙敏 陈喆 徐鼐 庞素娟 林强. 可生物降解聚碳酸亚丙酯/聚丙烯非织造布切片制备及其性能[J]. 纺织学报, 2013, 34(7): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!