纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 1-10.doi: 10.13475/j.fzxb.20220506610

• 特约专栏:纺织智能制造与机器人 •    下一篇

数据驱动的机器人化纺织生产智能管控系统研究进展

张洁1(), 徐楚桥2, 汪俊亮1, 郑小虎1   

  1. 1.东华大学 人工智能研究院, 上海 201620
    2.上海交通大学 机械与动力工程学院, 上海 200240
  • 收稿日期:2022-05-20 修回日期:2022-06-22 出版日期:2022-09-15 发布日期:2022-09-26
  • 作者简介:张洁(1963—),女,教授,博士。主要研究方向为智能制造工程。E-mail: mejiezhang@dhu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB1304000);中国科协青年人才托举工程项目(2021QNRC001)

Advancement in data-driven intelligent control system for roboticized textile production

ZHANG Jie1(), XU Chuqiao2, WANG Junliang1, ZHENG Xiaohu1   

  1. 1. Institute of Artificial Intelligence, Donghua University, Shanghai 201620, China
    2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2022-05-20 Revised:2022-06-22 Published:2022-09-15 Online:2022-09-26

摘要:

我国纺织产业规模庞大、生产流程长、用工量大,全流程自动化生产仍难以实现。建设数据驱动的机器人化纺织生产智能管控系统,对于推动我国纺织业由劳动密集型向少人或无人化生产转型升级具有重要的作用。系统回顾了纺织机器人生产系统的发展历程,提出了数据驱动的机器人化纺织生产智能管控系统体系架构,从装备层、数据层、应用层探讨了补全流程断点的多类型纺织机器人、多链融合的纺织全流程数字主线、多应用协同的纺织生产智能管控3项关键技术及应用,并对实际应用中的问题和挑战进行总结。最后指出高速实时性、灵巧精密性、自主协同性纺织机器人,及具备可解释性、可持续性、韧性的纺织生产智能管控系统是未来可能的发展方向。

关键词: 纺织工业, 机器人, 智能制造, 数据驱动, 生产管控, 智能系统

Abstract:

The scale of China's textile industry is huge with long production process, and the industry employs large number of workers, and full-process automated production is still difficult to achieve. The construction of a data-driven intelligent control system for roboticized textile production would play an important role in promoting the transformation and upgrading of China's textile industry from labor-intensive to less-personnel or unmanned production. This paper systematically reviewed the development history of textile robot and intelligent manufacturing system, and proposed a data-driven intelligent control system architecture for roboticized textile production. From the equipment layer, data layer and application layer, this paper discussed three key technologies and applications: multi-type textile robots to fill in the process breakpoints, multi-chain integrated digital thread of textile entire process, and multi-application collaborative intelligent control of textile production. Furthermore, the challenges in practical applications were summarized. The review concluded that high-speed, real-time, dexterity, precision, autonomous and collaborative textile robots, and intelligent management and control systems for textile production with interpretability, sustainability and toughness are possible future development directions.

Key words: textile industry, robot, smart manufacturing, data-driven, production control, intelligent system

中图分类号: 

  • TS10

图1

纺织机器人发展历程"

图2

数据驱动的机器人化纺织生产智能管控系统体系架构"

图3

纺织全流程数字主线"

图4

多应用协同的纺织生产智能管控结构"

[1] 田野, 徐卫林. 转型升级中纺织工厂设计发展方向的探讨[J]. 棉纺织技术, 2016, 44(11):28-31.
TIAN Ye, XU Weilin. Discussion of textile factories design development direction in transformation and upgrading process[J]. Cotton Textile Technology, 2016, 44(11):28-31.
[2] 梅顺齐, 胡贵攀, 王建伟, 等. 纺织智能制造及其装备若干关键技术的探讨[J]. 纺织学报, 2017, 38(10):166-171.
MEI Shunqi, HU Guipan, WANG Jianwei, et al. Analysis of some key technology basis for intelligent textile manufacturing and its equipment[J]. Journal of Textile Research, 2017, 38(10):166-171.
[3] XU Fei, XU Na. Design of control system for industrial spinning production line[C]//SHI Hubin. 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). Shenyang:IEEE, 2021: 195-199.
[4] 高红河. 环锭纺细纱机集体落纱的自动化升级改造实践[J]. 现代纺织技术, 2019, 27(2):88-92.
GAO Honghe. Practice of automation upgrading and transformation of ring spinning frame with collective doffing[J]. Advanced Textile Technology, 2019, 27(2):88-92.
[5] 黎奎鑫, 高丽英, 杜红专, 等. 细络联纺纱机的细纱筒管自动输送装置:201020281610.0[P]. 2011-04-20.
LI Kuixin, GAO Liying, DU Hongzhuan, et al. Automatic spinning tube transport device for fine winding spinning machines: 201020281610.0[P]. 2011-04-20.
[6] 李进彦, 樊建彬, 周义德. 粗细络联自动纺纱系统的设计与应用[J]. 棉纺织技术, 2015, 43(10):62-66.
LI Jinyan, FAN Jianbin, ZHOU Yide. Design and application of roving-spinning-winding unit automatic spinning system[J]. Cotton Textile Technology, 2015, 43(10):62-66.
[7] NOOR Abid, et al. SAEED Muhammad Asad, ULLAH Tehseen, A review of artificial intelligence applications in apparel industry[J]. Journal of The Textile Institute, 2022, 113(3): 505-514.
doi: 10.1080/00405000.2021.1880088
[8] XI Cheng, XIONG Bin, YE Yanshan, et al. A textile manufacturing information system with exponential smoothing method[J]. Artificial Intelligence Evolution, 2022, 3(1): 56-68.
[9] 吕永法, 徐剑锋. 自由端纺纱机接头小车: 201210269024.8[P]. 2015-09-16.
LÜ Yongfa, XU Jianfeng. Free end spinning machine joint trolley: 201210269024.8[P]. 2015-09-16.
[10] 崔建成. 自动穿经机的应用历史和发展[J]. 纺织报告, 2022, 41(1):46-48.
CUI Jiancheng. Application history and development of automatic drawing-in machine[J]. Textile Reports, 2022, 41(1):46-48.
[11] 莫帅, 周长鹏, 李旭, 等. 机器人智能关节驱控结构一体化设计方法研究[J]. 纺织学报, 2022, 43(3): 160-167.
MO Shuai, ZHOU Changpeng, LI Xu, et al. Research on integrated design method of robot intelligent joint drive control structure[J]. Journal of Textile Research, 2022, 43(3): 160-167.
[12] 王耀南, 陈铁健, 贺振东, 等. 智能制造装备视觉检测控制方法综述[J]. 控制理论与应用, 2015, 32(3):273-286.
WANG Yaonan, CHEN Tiejian, HE Zhendong, et al. Review on the machine vision measurement and control technology for intelligent manufacturing equipment[J]. Control Theory & Applications, 2015, 32(3):273-286.
[13] ONO Eiichi, ICHIJO Hisao, AISAKA Noboru. Flexible robotic hand for handling fabric pieces in garment manufacture[J]. International Journal of Clothing Science and Technology, 1992, 4(5): 16-23.
doi: 10.1108/eb003004
[14] 丁彩红, 李署程, 季兴跃. 基于缓冲对刀策略的自动化铲板组件设计[J]. 纺织学报, 2020, 41(4):155-160.
DING Caihong, LI Shucheng, JI Xingyue. Design of automatic scraping component based on buffering strategy for tool setting[J]. Journal of Textile Research, 2020, 41(4):155-160.
[15] 陈建桥, 毛玉良. 分布环境下印染机温度自适应控制系统的研究[J]. 微计算机信息, 2005(21):14-15,23.
CHEN Jianqiao, MAO Yuliang. A study of dye jigger temperature adaptive control system under DCS[J]. Microcomputer Information, 2005(21):14-15,23.
[16] 向忠, 洪乾耀, 杨云涛, 等. 基于密度测量的丝光机碱液浓度在线监控系统开发与应用[J]. 纺织学报, 2014, 35(12):126-131.
XIANG Zhong, HONG Qianyao, YANG Yuntao, et al. Design and development of alkali consistency online monitoring system for mercerizing machine based on measurement of alkali density[J]. Journal of Textile Research, 2014, 35(12):126-131.
[17] 解国升, 徐洋, 董蓬, 等. 基于机器视觉的布匹色差在线检测系统[J]. 东华大学学报(自然科学版), 2021, 47(1):28-33.
XIE Guosheng, XU Yang, DONG Peng, et al. On-line detection system of cloth color difference based on machine vision[J]. Journal of Donghua Univer-sity(Natural Science), 2021, 47(1):28-33.
[18] 李锋, 张坤, 原丽娜. 基于OPC UA的纺织智能染整车间信息模型研究与实现[J]. 纺织学报, 2020, 41(2): 149-154.
LI Feng, ZHANG Kun, YUAN Lina. Research and implementation of textile intelligent dyeing and finishing workshop information model based on OPC UA[J]. Journal of Textile Research, 2020, 41(2): 149-154.
[19] TANG Jie, WANG Tao, YANG Zhiqi. Design and analysis of the end-effector of the flexible polishing robot[J]. Key Engineering Materials, 2016, 693:58-63.
doi: 10.4028/www.scientific.net/KEM.693.58
[20] 李晓黎. 人工智能技术在机器设备剩余使用寿命预测中的应用[J]. 山西大学学报(自然科学版), 2022, 45(3):622-630.
LI Xiaoli. Recent AI techniques for applications of equipment remaining useful life prediction[J]. Journal of Shanxi University(Natural Science Edition), 2022, 45(3):622-630.
[21] 吴飞, 农皓业, 马晨浩. 基于PSO-LSTM模型的刀具磨损预测方法[J/OL]. 吉林大学学报(工学版), 2021. https//doi.org/10.13229/j.cnki.jdxbgxb20210778.
WU Fei, NONG Haoye, MA Chenhao. Tool wear prediction method based on PSO-LSTM model[J/OL]. Journal of Jilin University(Engineering and Technology Edition), https//doi.org/10.13229/j.cnki.jdxbgxb20210778.
[22] 吴学锋, 齐贺男, 李东亚. 物流分拣机器人的设计与研究[J]. 机电工程技术, 2022, 51(1):111-113,129.
WU Xuefeng, QI Henan, LI Dongya. Design and research of logistics sorting robot[J]. Mechanical & Electrical Engineering Technology, 2022, 51(1):111-113,129.
[23] 郑泽钿, 陈银清, 林文强, 等. 工业机器人上下料技术及数控车床加工技术组合应用研究[J]. 组合机床与自动化加工技术, 2013, 7: 105-109.
ZHENG Zedian, CHEN Yinqing, LIN Wenqiang, et al. Study on groupware applications about industrial robot to load-unload workpiece and the processing technology of NC lathe[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2013, 7: 105-109.
[24] 胡春生, 魏红星, 闫小鹏, 等. 码垛机器人的研究与应用[J]. 计算机工程与应用, 2022, 58(2):57-77.
doi: 10.3778/j.issn.1002-8331.2107-0096
HU Chunsheng, WEI Hongxing, YAN Xiaopeng, et al. Research and application of palletizing robot[J]. Computer Engineering and Applications, 2022, 58(2):57-77.
doi: 10.3778/j.issn.1002-8331.2107-0096
[25] 计时鸣, 黄希欢. 工业机器人技术的发展与应用综述[J]. 机电工程, 2015, 32(1): 1-13.
JI Shiming, HUANG Xihuan. Review of development and application of industrial robot technology[J]. Journal of Mechanical & Electrical Engineering, 2015, 32(1): 1-13.
[26] 汝欣, 彭来湖, 吕明来, 等. 纬编针织物几何建模及其算法[J]. 纺织学报, 2018, 39(9):44-49.
RU Xin, PENG Laihu, LÜ Minglai, et al. Modelling and algorithm of weft knitted fabric[J]. Journal of Textile Research, 2018, 39(9):44-49.
[27] 代巍, 韦庆恒, 谢宁, 等. 工业机器人超声波自动化焊点检测设备的设计研究[J]. 机电产品开发与创新, 2020, 33(4): 18-20.
DAI Wei, WEI Qingheng, XIE Ning, et al. The design and research of industrial robot ultrasonic automated welding spot detection equipment[J]. Development & Innovation of Machinery & Electrical Products, 2020, 33(4): 18-20.
[28] 赵树煊, 张洁, 汪俊亮, 等. 基于两阶段深度迁移学习的面料疵点检测算法[J]. 机械工程学报, 2021, 57(17):86-97.
doi: 10.3901/JME.2021.17.086
ZHAO Shuxuan, ZHANG Jie, WANG Junliang, et al. Fabric defect detection algorithm based on two-stage deeptransfer learning[J]. Journal of Mechanical Engineering, 2021, 57(17):86-97.
doi: 10.3901/JME.2021.17.086
[29] 张洁, 吕佑龙, 汪俊亮, 等. 大数据驱动的纺织智能制造平台架构[J]. 纺织学报, 2017, 38(10): 159-165.
ZHANG Jie, LÜ Youlong, WANG Junliang, et al. Big-data-driven framework for intelligent textile manufact-uring[J]. Journal of Textile Research, 2017, 38(10):159-165.
[30] 马晓辉, 陈建. 数字化纺纱车间的智能化技术特点及效果分析[J]. 棉纺织技术, 2017, 45(8): 10-13.
MA Xiaohui, CHEN Jian. Intelligent technology performance and effect analysis of digital spinning workshop[J]. Cotton Textile Technology, 2017, 45(8): 10-13.
[31] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4):753-768.
ZHUANG Cunbo, LIU Jianhua, XIONG Hui, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768.
[32] WANG Junliang, XU Chuqiao, ZHANG Jie, et al. A collaborative architecture of the industrial internet platform for manufacturing systems[J]. Robotics and Computer-Integrated Manufacturing, 2020. DOI: 10.1016/j.rcim.2019.101854.
doi: 10.1016/j.rcim.2019.101854
[33] 周亚勤, 汪俊亮, 鲍劲松, 等. 纺织智能制造标准体系架构研究与实现[J]. 纺织学报, 2019, 40(4):145-151.
ZHOU Yaqin, WANG Junliang, BAO Jinsong, et al. Research and implementation of standard system architecture of textile intelligent manufacturing[J]. Journal of Textile Research, 2019, 40(4):145-151.
[34] 伏广伟, 贺志鹏, 刘凤坤. 纺织服装业智能化与智慧化发展探究[J]. 毛纺科技, 2019, 47(8):1-6.
FU Guangwei, HE Zhipeng, LIU Fengkun. Research on the intelligence and intelligent development of textile and garment industry[J]. Wool Textile Journal, 2019, 47(8):1-6.
[35] NGAI E W T, PENG S, ALEXANDER Paul, et al. Decision support and intelligent systems in the textile and apparel supply chain: an academic review of research articles[J]. Expert Systems with Applications, 2014, 41(1): 81-91.
doi: 10.1016/j.eswa.2013.07.013
[36] LI Youfang, LI Peng. Design and research on wireless intelligent monitoring system for sewage pipeline leakage of textile mill[J]. Microprocessors and Microsystems, 2021. DOI: 10.1016/j.micpro.2020.103734.
doi: 10.1016/j.micpro.2020.103734
[37] 郭明瑞, 韩晨晨, 卢雨正, 等. 浅谈纺纱流程智能化发展的现状[J]. 棉纺织技术, 2020, 48(5):81-84.
GUO Mingrui, HAN Chenchen, LU Yuzheng, et al. Disscussion of spinning process intelligent development status[J]. Cotton Textile Technology, 2020, 48(5):81-84.
[38] 李婷. 纱线断裂检测专利技术综述[J]. 中国科技信息, 2018(12):22-25.
LI Ting. A review of yarn breakage detection patent technology[J]. China Science and Technology Information, 2018(12):22-25.
[39] 陈革. 纺织机械关键共性技术的回顾与展望[J]. 纺织器材, 2022, 49(1):2-6.
CHEN Ge. Review and prospect of key common technologies of textile machinery[J]. Textile Accessories, 2022, 49(1):2-6.
[40] 杨丽丽. 基于大数据背景下的纺织制造系统设计研究[J]. 山西农经, 2017(4):101,107.
YANG Lili. Research on textile manufacturing system design based on big data[J]. Shanxi Agricultural Economy, 2017(4):101,107.
[41] 王煦. 我国绿色制造体系建设现状及未来深入推进的建议[J]. 中国国情国力, 2021(11):20-22.
WANG Xu. Present situation of green manufacturing system construction in China and suggestions for further promotion in the future[J]. China National Conditions and Strength, 2021(11):20-22.
[1] 郑小虎, 刘正好, 陈峰, 刘志峰, 汪俊亮, 侯曦, 丁司懿. 环锭纺纱全流程机器人自动化生产关键技术[J]. 纺织学报, 2022, 43(09): 11-20.
[2] 毛慧敏, 孙磊, 屠佳佳, 史伟民. 纱线自动接头机关键技术[J]. 纺织学报, 2022, 43(09): 21-26.
[3] 高晓飞, 齐立哲, 孙云权. 面向柔性面料立体缝纫的随形机械手设计[J]. 纺织学报, 2022, 43(09): 27-33.
[4] 吴乐, 张倩, 杨万然, 徐朝月, 王维冠, 侯曦. 基于增强现实技术的筒子纱印染锁扣机器人运维巡检系统研究[J]. 纺织学报, 2022, 43(09): 34-40.
[5] 刘锋, 徐杰, 柯文博. 基于深度强化学习的服装缝制过程实时动态调度[J]. 纺织学报, 2022, 43(09): 41-48.
[6] 屠佳佳, 孙磊, 毛慧敏, 戴宁, 朱婉珍, 史伟民. 圆纬机纱架自动换筒技术[J]. 纺织学报, 2022, 43(07): 178-185.
[7] 莫帅, 周长鹏, 李旭, 杨振宁, 刘辉华, 高瀚君. 机器人智能关节驱控结构一体化设计方法研究[J]. 纺织学报, 2022, 43(03): 160-167.
[8] 唐政坤, 刘艳缤, 徐晨烨, 刘艳彪, 沈忱思, 李方, 王华平. 面向减污降碳目标的纺织工业环境治理发展趋势[J]. 纺织学报, 2022, 43(01): 131-140.
[9] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[10] 王晓华, 王育合, 张蕾, 王文杰. 缝纫机器人对织物张力与位置的模糊阻抗控制[J]. 纺织学报, 2021, 42(11): 173-178.
[11] 章耀鹏, 沈忱思, 徐晨烨, 李方. 纺织工业典型污染物治理技术回顾[J]. 纺织学报, 2021, 42(08): 24-33.
[12] 杜劲松, 余雅芸, 赵妮, 谢子昂, 费中华, 潘静姝. 不同类型服装企业智能制造能力成熟度评价模型[J]. 纺织学报, 2021, 42(05): 162-167.
[13] 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(04): 191-200.
[14] 刘立东, 李新荣, 刘汉邦, 李丹丹. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(03): 161-168.
[15] 张文昌, 单忠德, 卢影. 基于机器视觉的纱笼纱杆快速定位方法[J]. 纺织学报, 2020, 41(12): 137-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!