纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 74-80.doi: 10.13475/j.fzxb.20220507801

• 纺织工程 • 上一篇    下一篇

可视化织物弯曲性测试方法

杨洋1, 刘成霞1,2,3()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.服装数字化技术浙江省工程实验室, 浙江 杭州 310018
    3.丝绸文化传承与产品设计数字化技术文化部重点实验室, 浙江 杭州 310018
  • 收稿日期:2023-01-06 修回日期:2023-12-26 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 刘成霞
  • 作者简介:杨洋(1997―),女,硕士生。主要研究方向为纺织服装检测技术。
  • 基金资助:
    国家自然科学基金项目(51405446);浙江省自然科学基金项目(LY20E050017)

Fabric visualization bending test method

YANG Yang1, LIU Chengxia1,2,3()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Province Engineering Laboratory of Clothing Digital Technology, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Inheriting and Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2023-01-06 Revised:2023-12-26 Published:2024-03-15 Online:2024-04-15
  • Contact: LIU Chengxia

摘要:

针对纺织面料弯曲性测试需要多次裁样、费时等问题,提出1次可得到多组结果且快速简便的太阳花法测试方法。通过选择经纬2个方向的试样,裁剪5个宽度为2 cm、长度为6 cm的单条测试样,搭建测试装置并选取特征指标:展开面积、展开周长、展开长度和下垂高度。将太阳花法所得指标与斜面法测试的抗弯长度与抗弯刚度进行对比分析。结果表明:4个新指标均与斜面法中的抗弯长度和抗弯刚度具有较好的相关性,证明本文方法具有良好的可行性。该方法既可将织物正反面弯曲性差异及弯曲稳定性结果可视化,还可提高测试效率,节省检测时间。

关键词: 织物, 弯曲性能, 抗弯长度, 抗弯刚度, 展开面积, 展开周长, 展开长度, 下垂高度

Abstract:

Objective Fabric bending is an important attribute that affects the style and appearance of fabrics and directly reflects the magnitude of fabric draping ability, therefore fabric bending evaluation has attracted the attention of many researchers. The fabric is soft and prone to deformation that even test results in the same direction witness considerable variation. It has been necessary to conduct multiple tests to reduce experimental errors. The current bending test standard is to test the warp and weft directions of the fabric for 5 times each, the average of which is taken to characterize the overall bending performance of the fabric, which is cumbersome and time-consuming. Facing this situation, this paper proposes a fast and simple testing method capable of simultaneously obtaining multiple sets of results, which is referred as the sunflower method.

Method In this research, 14 types of woven fabrics were selected as the research objects, and 2 samples were cut from each fabric in two directions, 0° and 90°. Four characteristic indexes were extracted by the new method, which are unfolding area S, unfolding perimeter Z, unfolding length L and sagging height H. The relationship between the new method and the conventional testing methods was explored by analyzing the relationship between four new indicators and bending length C and bending stiffness B. Correlation analysis was adopted to explore the correlation between various indicators. Coefficient of variation was introduced to study the testing stability of the two methods through one-way analysis of variance, such as CV of different directions, fabrics, and textures.

Results Comparing the correlation coefficient values of S, Z, L and H with the bending length and bending stiffness in four directions, it was found that all Pearson coefficient values are above 0.78, except for H at 90°. The negative correlation with conventional indexes was H, and the positive correlation was S, Z and L. Pearson coefficient between Z and L in all four directions was greater than 0.85. All the four new indicators showed good correlation with the bending length and bending stiffness in convenitional methods, proving feasibility of the method proposed in this paper. The CVs of Z of the new method and the bending length of the inclined plane method were both less than 0.1. Single factor analysis of variance is adopted to compare the CVs of the four directions in the new method, and no obvious difference was found. Comparing the CV of the new method for testing the bending properties of cotton and chemical fiber fabrics through single factor analysis showed no significant difference, and there was no significant difference in the CVs of the bending test results of plain and twill fabrics. In other words, the stability of the new method for testing the bending properties of fabrics in different directions was the same. The stability of the bending test results for cotton and chemical fiber fabrics, as well as the stability of the bending test results for plain or twill fabrics, are the same as well.

Conclusion The new method proposed in this paper, named as the sunflower method, showed satisfactory agreement with the conventional bending test method. It can test the bending stability of fabrics in two directions, which can simultaneously obtain 10 test values and 4 characteristic indicators, without the need for multiple cutting and repeated testing. Compared with conventional methods, it has higher efficiency and saved testing time. The data obtained from using the new method can also be adopted to visualize the stability of fabric bending, providing a clear understanding of the differences in fabric bending, which is conducive to material selection in fashion design.

Key words: fabric, bending property, bending length, bending stiffness, unfolding area, unfolding perimeter, unfolding length, sagging height

中图分类号: 

  • TS941.2

表1

织物规格参数"

织物
编号
组织结构 纱线原料 经密/
(根·(10 cm) -1)
纬密/
(根·(10 cm) -1)
面密度/
(g·m-2)
厚度/mm
1# 平纹 65%棉与35%涤纶 580 290 128 0.16
2# 平纹 100%棉 560 320 109 0.22
3# 斜纹 100%棉 420 380 101 0.18
4# 斜纹 100%棉 560 440 176 0.27
5# 平纹 100%粘胶 480 460 125 0.19
6# 平纹 100%棉 260 240 121 0.16
7# 斜纹 80%涤纶与20%粘胶 380 270 182 0.34
8# 斜纹 80%涤纶与20%粘胶 600 500 104 0.11
9# 斜纹 60%棉与40%锦纶 230 130 166 0.37
10# 斜纹 100%棉 510 290 218 0.39
11# 斜纹 100%涤纶 460 290 142 0.26
12# 斜纹 100%棉 450 280 118 0.18
13# 斜纹 65%涤纶与35%棉 600 330 116 0.19
14# 斜纹 65%羊毛与35%棉 560 370 92 0.15

图1

试样形状及规格"

图2

织物弯曲性能测试装置"

图3

织物弯曲特征指标"

图4

不同织物试样的弯曲形态"

图5

14块织物在经纬向的弯曲俯视图像"

表2

织物弯曲性能测试结果"

试样
编号
太阳花法 斜面法
展开面积S/
cm2
展开周长Z/
cm
展开长度L/
cm
下垂高度H/
cm
抗弯长度C/
mm
抗弯刚度B/
(cN·cm-1)
1# 3.68 8.71 2.67 0.86 27.69 40.33
2# 1.30 4.98 0.90 3.16 21.51 13.10
3# 2.15 6.48 0.45 2.59 22.22 29.55
4# 0.53 3.52 0.35 3.78 18.03 7.90
5# 0.52 3.80 0.26 3.21 17.61 6.13
6# 0.73 3.43 0.46 3.20 17.62 5.28
7# 0.67 3.94 0.46 3.85 18.91 15.73
8# 0.27 2.70 0.17 4.34 15.21 6.68
9 2.39 7.29 1.98 2.33 23.80 23.93
10# 2.52 6.07 1.29 2.06 20.76 23.08
11# 0.54 3.33 0.38 3.50 17.43 5.58
12# 0.60 3.87 0.43 3.68 19.36 7.88
13# 2.06 6.53 1.68 2.08 23.83 26.80
14# 0.96 4.48 0.66 3.34 18.65 25.15

表3

不同指标间的相关系数"

特征
指标
方向 抗弯长度C 抗弯刚度B
90° 90°
展开
面积S
0.789** 0.444 0.806** 0.538*
90° 0.462 0.916** 0.433 0.854**
展开
周长Z
0.914** 0.490 0.885** 0.614*
90° 0.439 0.963** 0.407 0.873**
展开
长度L
0.905** 0.555* 0.910** 0.644*
90° 0.361 0.959** 0.311 0.870**
下垂
高度H
-0.896** -0.360 -0.849** -0.484
90° -0.275 -0.882** -0.249 -0.745**

图6

展开周长与抗弯长度之间的关系"

图7

展开长度与抗弯长度之间的关系"

表4

新指标与抗弯长度的变异系数"

织物
序号
展开周长Z 展开长度L 抗弯长度C
90° 90° 90°
1# 0.079 0.045 0.134 0.047 0.032 0.019
2# 0.072 0.075 0.156 0.281 0.012 0.023
3# 0.083 0.026 0.142 0.197 0.019 0.016
4# 0.053 0.092 0.143 0.308 0.037 0.037
5# 0.069 0.035 0.208 0.190 0.059 0.018
6# 0.057 0.093 0.111 0.387 0.037 0.031
7# 0.058 0.046 0.177 0.312 0.038 0.012
8# 0.016 0.078 0.100 0.615 0.033 0.012
9 0.057 0.056 0.109 0.068 0.029 0.015
10# 0.050 0.047 0.091 0.178 0.017 0.032
11# 0.079 0.034 0.250 0.091 0.028 0.030
12# 0.038 0.057 0.091 0.298 0.034 0.040
13# 0.058 0.058 0.067 0.264 0.030 0.018
14# 0.048 0.030 0.118 0.079 0.016 0.027
[1] 阳丹, 杜赵群, 刘贵, 等. 基于CHES-FY系统的织物触感风格等级评价[J]. 丝绸, 2022, 59 (10): 82-90.
YANG Dan, DU Zhaoqun, LIU Gui, et al. Grade evaluation of fabric tactile style based on CHES-FY system[J]. Journal of Silk, 2022, 59(10):82-90.
[2] RYKLIN Dzmitry, 汤晓彤. 评估织物悬垂性的新方法[J]. 现代纺织技术, 2022, 30(1): 109-114.
RYKLIN Dzmitry, TANG Xiaotong. Development of a new method for evaluating the drapability of fabrics[J]. Advanced Textile Technology, 2022, 30(1): 109-114.
[3] 吕雪珊, 祝杭琪, 王雪琴. 真丝织物虚拟化的悬垂性对比研究[J]. 丝绸, 2022, 59(1):38-45.
LU Xueshan, ZHU Hangqi, WANG Xueqin. Comparative study on drapability of virtual silk fabrics[J]. Journal of Silk, 2022, 59(1):38-45.
[4] 宋委娜, 刘成霞. 织物悬垂性能的各向差异性研究[J]. 现代纺织技术, 2023, 31 (6): 160-168.
SONG Weina, LIU Chengxia. Research on fabric draping anisotropy[J]. Advanced Textile Technology, 2023, 31 (6): 160-168.
[5] 施明娟, 刘成霞. 基于三维扫描技术的斜裙造型客观评价[J]. 丝绸, 2023, 60(10): 62-69.
SHI Mingjuan, LIU Chengxia. Objective evaluation of oblique skirt modeling based on 3D scanning technology[J]. Journal of Silk, 2023, 60(10): 62-69.
[6] 黄雪纯, 刘成霞. 面料性能对A字裙动态造型的影响[J]. 丝绸, 2022, 59(3):59-67.
HUANG Xuechun, LIU Chengxia. Influence of fabric performance on the dynamic shape of a line skirt[J]. Journal of Silk, 2022, 59(3):59-67.
[7] 蒋鑫, 刘成霞. 基于三维扫描的织物多方向可视化弯曲性测试方法[J/OL]. 现代纺织技术, 2023. DOI:10.19398/j.att.202306028.
JIANG Xin, LIU Chengxia. A multi-direction visual bending test method of fabrics based on 3D scanning[J/OL]. Advanced Textile Technology, 2023. DOI:10.19398/j.att.202306028.
[8] 韩蓉, 胡堃, 毋戈, 等. 应用图像法的织物弯曲刚度计算[J]. 纺织学报, 2016, 37(3):41-46.
HAN Rong, HU Kun, WU Ge, et al. Calculation on bending stiffness of woven fabrics by image processing method[J]. Journal of Textile Research, 2016, 37(3):41-46.
[9] 陈文苗, 刘成霞. 悬挂穿孔法测试织物弯曲悬垂性[J]. 丝绸, 2021, 58 (8): 40-46.
CHEN Wenmiao, LIU Chengxia. Measurement of fabric bending and draping properties by hanging & perforating method[J]. Journal of Silk, 2021, 58 (8): 40-46.
[10] LUDMILA Fridrichova. A new method of measuring the bending rigidity of fabrics and its application to the determination of the anisotropy[J]. Textile Research Journal, 2013, 83(9): 883-892.
doi: 10.1177/0040517512467133
[11] PIOTR Szablewski, RYSZARD Korycki. Numerical analysis of free folding of flat textile products and proposal of new test concerning bending rigidity[J]. Indian Journal of Fibre & Textile Research, 2019, 44(2): 180-187.
[12] DU Zhaoqun, ZHOU Tianxian, YAN Ni, et al. Measurement and characterization of bending stiffness for fabrics[J]. Fibers and Polymers, 2011, 2(1): 104-110.
[13] 刘成霞, 张亚琦. 织物多方向弯曲性能测试新方法[J]. 纺织学报, 2022, 43(10):53-57.
LIU Chengxia, ZHANG Yaqi. New measurement method for fabric multi-directional bending performance[J]. Journal of Textile Research, 2022, 43(10):53-57.
[14] 吴巧英, 胡滢, 吴春胜, 等. 不同弯曲性能测试仪测试结果的比较[J]. 纺织学报, 2015, 36(7):126-130.
WU Qiaoying, HU Ying, WU Chunsheng, et al. Comparative analysis on test results of different fabric bending behavior test apparatus[J]. Journal of Textile Research, 2015, 36(7):126-130.
[1] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[2] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[3] 马莹, 陈奡, 胡月鹏, 潘俊, 胡瀚杰, 禄盛. 芳纶平纹织物单纱抽拔力学性能分析[J]. 纺织学报, 2024, 45(03): 58-64.
[4] 丁彩红, 顾馨, 卢晨雨. 血管支架预制件的六角形三维虚拟编织[J]. 纺织学报, 2024, 45(03): 65-73.
[5] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[6] 葛灿, 雍楠, 杜恒, 吴天宇, 方剑. 开放热管理式三维织物基光热海水淡化系统[J]. 纺织学报, 2024, 45(02): 153-161.
[7] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170.
[8] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[9] 程子琪, 卢业虎, 许静娴. 电热织物系统热传递模拟及其参数设计[J]. 纺织学报, 2024, 45(02): 206-213.
[10] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
[11] 居傲, 向卫宏, 崔艳超, 孙颖, 陈利. 基于定制纤维铺放工艺的电加热织物制备及其半球成型性能[J]. 纺织学报, 2024, 45(02): 67-76.
[12] 南静静, 杜明娟, 孟家光, 余灵婕, 支超. 海水老化下类填充微穿孔板结构水下吸声材料的性能及其寿命预测[J]. 纺织学报, 2024, 45(02): 85-92.
[13] 范奥运, 沈军炎, 杨雷, 李剑浩, 张志坚. 表面活性剂与纳米颗粒协同稳定Pickering有机硅乳液的制备及其应用性能[J]. 纺织学报, 2024, 45(01): 136-145.
[14] 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160.
[15] 杨柳, 李羽佳, 俞琰, 马磊, 张瑞云. 基于纽介堡方程的色纺织物颜色预测[J]. 纺织学报, 2024, 45(01): 83-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!