纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 83-89.doi: 10.13475/j.fzxb.20220603301

• 纺织工程 • 上一篇    下一篇

基于纽介堡方程的色纺织物颜色预测

杨柳1,2, 李羽佳1,2, 俞琰1,2, 马磊3, 张瑞云1,2,4()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    3.中国纺织信息中心, 北京 100010
    4.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
  • 收稿日期:2022-06-13 修回日期:2023-08-11 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 张瑞云(1969—),女,教授,博士。主要研究方向为新型功能纤维与数字化纺织技术。E-mail:ryzhang@dhu.edu.cn
  • 作者简介:杨柳(1992—),女,博士生。主要研究方向为色纺织物计算机测配色。
  • 基金资助:
    上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100);中央高校基本科研业务费专项资金资助项目(CUSF-DH-D-2018038);中国留学基金委资助项目(201806630110)

Color prediction of fiber-colored fabrics based on Neugebauer equation

YANG Liu1,2, LI Yujia1,2, YU Yan1,2, MA Lei3, ZHANG Ruiyun1,2,4()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. China Textile Information Center, Beijing 100010, China
    4. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
  • Received:2022-06-13 Revised:2023-08-11 Published:2024-01-15 Online:2024-03-14

摘要:

色纺织物由多种色纤维混合织造,其颜色预测过程复杂,基于格拉斯曼色光混合理论和印刷网点的纽介堡方程,建立了便于计算的颜色预测模型。预测过程分2种情况讨论,一种是取决于表面一层色纤维,另一种是取决于最上面2层纤维相互作用。当考虑最上面2层纤维相互叠加时,相互堆叠简化为与同色堆叠或与两色堆叠。根据不同方式各自建立颜色预测模型,选出预测色差最小的模型并对其优化。结果表明:当以色纺织物最上面2层纤维堆叠组成的色元对混色织物颜色预测时,2层纤维组分不同,认为堆叠顺序对该色元颜色值无影响建立的模型预测色差最小,且对该模型中各色元占比面积系数进行一阶线性回归修正后能较好地用于色纺织物表面颜色值的预测。

关键词: 格拉斯曼色光混合理论, 色纺织物, 纽介堡方程, 颜色预测, 色差

Abstract:

Objective Fiber-colored fabrics are woven from a variety of colored fibers, and the fabric color prediction is complicated. According to the stacking of color fibers and the interaction between fiber and incident light, color prediction models convenient for color calculation were established based on the Glassmann' color mixing theory and Neugebauer Equation, and the model was further optimized to predict the color of fabrics for accuracy and efficiency.

Method Color prediction was discussed in two cases: one was depended on the surface layer of colored fibers, and the other was depended on the interaction of the top two-layer fibers. When considering the top two layers of fibers that were superimposed on each other, the mutual stacking was simplified as stacking with the same color or stacking with another color regardless of the number of primary fibers in the fabric. Color prediction models were established according to different calculation methods, and the model with the minimum color difference was selected and optimized.

Results According to different calculation methods, three color prediction models were set up. When the color of fiber-colored fabrics was depended on the surface layer of colored fibers, model 1 was used based on the mixing primary faber colors and the average color difference for all the fabrics was 12.39. When the color of fiber-colored fabrics was depended on the interaction of the top two-layer fibers, models 2 and 3 were used. In this case, considering that the top two layers of fibers were superimposed on each other, the mutual stacking was simplified as stacking with the same color or stacking with another color, regardless of the number of primary fibers in the fabric. The color of fiber-colored fabrics was mixed by 6 primary units in model 2, and its average color difference for all the fabrics was 7.83. The color of fiber-colored fabrics was mixed by 9 primary units in model 3, where unit A+B is different from the unit B+A, but is the same as A+C and B+C. The average color difference using model 3 for all the fabrics was 9.49. Model 2 achieved the smallest average color difference, meaning that when the color of fiber-colored fabrics was depended on the interaction of the top two-layer fibers, the stacking sequence has no effect on the color value of the primary units. This model was optimized by linear regression and the proportion coefficient of each primary unit in the model can be better adopted to predict the color value of fiber-colored fabrics. The new model was named model 4, and its average color difference for all the fabrics was 3.38. The new model 4 was proven to be convenient for prediction of the surface color of fiber-colored fabrics, and could be used as a reference for predicting the color of two-color or three-color mixed fabrics.

Conclusion Based on the Glassmann' color mixing theory and Neugebauer equation, three color prediction models were set up. Model 2 is associated to the smallest average color difference and is further optimized by linear regression. The new model 4 is convenient for predicting the surface color of fiber-colored fabrics, and can be used as a reference for predicting the color of two-color or three-color mixed fabrics. The De Mitchell equation was dupted to calculate the proportion coefficient of the primary units in the Neugebauer equation, and it was found difficult to calculate and required assumptions, resulting in theoretical errors. In this research, the primary units was simplified according to different assumptions, also generated theoretical errors, resulting in model 4 predicting higher color difference than the 1 color difference unit. The primary units of the fiber-colored fabrics is expected to be optimized in future research, fully considering the theoretical error when calculating the primary units proportion.

Key words: Glassmann's theory of color light mixing, fiber-colored fabrics, Neugebauer equation, color prediction, color difference

中图分类号: 

  • TS181.8

表1

三色纤维混色织物的混合比例"

试样
编号
色纤维占比/%
1 10 10 80
2 10 20 70
9 20 10 70
36 80 10 10

表2

色纤维的三刺激值"

纤维颜色 X Y Z
21.03 12.29 7.68
46.26 41.65 4.40
8.26 8.86 26.41

表3

预测模型2#中三色纤维混合参数"

色元数量i 基本
色元
色元占比fi 色元三
刺激值
1 A+A a2 X 1 Y 1 Z 1
2 B+B b2 X 2 Y 2 Z 2
3 C+C c2 X 3 Y 3 Z 3
4 A+B/B+A 2ab X 4 Y 4 Z 4
5 A+C/C+A 2ac X 5 Y 5 Z 5
6 B+C/C+B 2bc X 6 Y 6 Z 6

图1

光线与色纺织物作用的光路图"

表4

色纺织物表面颜色预测结果"

混色织物 色差 模型1# 模型2# 模型3#
红+黄 最大值 11.93 7.41 9.23
最小值 3.19 0.36 1.57
均值 8.72 4.73 6.65
红+蓝 最大值 9.45 5.54 6.60
最小值 3.69 0.70 1.94
均值 6.81 3.89 5.05
黄+蓝 最大值 28.38 17.99 21.16
最小值 11.04 4.77 6.34
均值 20.22 12.14 14.66
三彩色混 最大值 26.46 16.46 20.03
最小值 5.67 3.98 4.52
均值 12.75 8.51 10.01
总均值 12.39 7.83 9.49

表5

一次线性回归系数"

色元数量i U i V i W i
1 19.69 12.33 7.61
2 33.93 31.08 5.15
3 13.78 12.19 23.75
4 22.24 13.18 4.93
5 0.26 2.46 12.01
6 4.07 4.15 5.52

图2

预测模型修正前后预测色差对比"

[1] 钱爱芬. 色纺纱产品特点及调配色原理[J]. 棉纺织技术, 2010, 38(11):66-68.
QIAN Aifen. Colored spun yarn characteristic and color mixing & matching principle[J]. Cotton Textile Technology, 2010, 38(11):66-68.
[2] WALOWIT E, MCCARTHY C J, BERNS R S. An algorithm for the optimization of Kubelka-Munk absorption and scattering coefficients[J]. Color Research & Application, 2010, 12(6):340-343.
[3] STEARNS EI, NOECHEL F. Spectrophotometric prediction of color of wool blends[J]. American Dyestuff Reporter, 1944, 33(9):177-180.
[4] FRIELE L F C. The application of colour measurement in relation to fiber blending[J]. Journal of the Textile Institute Proceedings, 1952, 43(8) :604-611.
[5] YANG Ruihua, XU Yaya, DENG Qianqian, et al. Kubelka-Munk double constant theory of digital rotor spun color blended yarn[J]. Dyes and Pigments, 2019, 165:151-156.
doi: 10.1016/j.dyepig.2019.02.008
[6] YANG Ruihua, XU Yaya, HAN Ruiye. Friele model of rotor spun multi-primary-colour-blended yarn[J]. Fibres and Textiles in Eastern Europe, 2019, 27, 5(137):50-59.
[7] ZHANG Ge, ZHOU Jian, PAN Ruru, et al. Color prediction for pre-colored cotton fiber blends based on improved Kubelka-Munk double-constant theory[J]. Fibers and Polymers, 2021, 22(2):412-420.
doi: 10.1007/s12221-021-9371-z
[8] 黄紫娟, 李加林, 周砚江. 单层数码仿真彩色提花丝织物颜色模型的研究[J]. 浙江理工大学学报, 2007, 24(4):1673-3851.
HUANG Zijuan, LI Jialin, ZHOU Yanjiang. Research on color model of single-layer digital simulation color of jacquard silk fabric[J]. Journal of Zhejiang Sci-Tech University, 2007, 24(4):1673-3851.
[9] 黄紫娟. 一经一纬单层色织物明度模型建立初探[J]. 国外丝绸, 2008(4): 33-35.
HUANG Zijuan. A preliminary study on the lightness model of one warp and one weft single-layer colored fabric[J]. Foreign Silk, 2008(4): 33-35.
[10] 温小丽. 异色经纬交织织物的混色效应研究[D]. 苏州: 苏州大学, 2010:60.
WEN Xiaoli. Study on the color mixing effect of different color warp and weft interwoven fabrics[D]. Suzhou: Soochow University, 2010:60.
[11] 王红伟, 陈浩杰. 浅谈纽介堡方程的理论价值及应用局限性[J]. 广东印刷, 2014(6):13-14.
WANG Hongwei, CHEN Haojie. Discusses the theoretical value and application limitations of Newburg equation[J]. Guangdong Printing, 2014(6):13-14.
[12] 杨柳, 李羽佳, 张鑫. 色纺针织物紧密程度对颜色预测的影响[J]. 纺织学报, 2022, 43(5):104-108.
YANG Liu, LI Yujia, ZHANG Xin, et al. Effect of tightness of fiber-colored knitted fabric on color prediction[J]. Journal of Textile Research, 2022, 43(5):104-108.
[13] 赵林, 姚穆. 纤维反光和透光性质的研究[J]. 西北纺织工学院学报, 2001, 15(2):207-212.
ZHAO Lin, YAO Mu. Study on the reflective and transmitting properties of fibers[J]. Journal of Northwest Institute of Textile Science and Technology, 2001, 15(2):207-212.
[14] 刘浩学. 印刷色彩学[M]. 北京: 中国轻工业出版社, 2008:52-53.
LIU Haochun. Printing color science[M]. Beijing: China Light Industry Press, 2008:52-53.
[15] 成刚虎, 王西珍. 纽介堡方程应用误差的理论探析[J]. 西安理工大学学报, 2011(27):74-78.
CHEN Ganghu, WANG Xizhen. Application error analysis to neugebauer equation[J]. Journal of Xi'an University of Technology, 2011(27):74-78.
[16] WEI Chun'ao, WAN Xiaoxia, LI Junfeng. A modified single-constant Kubelka-Munk model for color prediction of pre-colored fiber blends[J]. Cellulose, 2018, 25:2091-2102.
doi: 10.1007/s10570-018-1669-7
[17] 易清珠. 基于全局与局部特征的涤纶色纤维混合呈色研究[D]. 上海: 东华大学, 2021:44.
YI Qingzhu. Research on the mixed color rendering of polyester color fibers based on global and local characteristics[D]. Shanghai: Donghua University, 2021: 44.
[18] 张瑞, 周世生. 基于纽介堡方程的柔版印刷呈色模型探讨[J]. 包装工程, 2010, 31(5):96-98.
ZHANG Rui, ZHOU Shisheng. Discussion on the color rendering model of flexographic printing based on the Newcastle equation[J]. Packaging Engineering, 2010, 31(5):96-98.
[19] 张桢杰, 刘真. 3种基于分区纽介堡方程的分色算法的误差分析[J]. 包装工程, 2012, 33(15):88-91.
ZHANG Zhenjie, LIU Zhen. Errors analysis of three color separation algorithms based on subarea Neugebauer equation[J]. Packaging Engineering, 2012, 33(15) :88-91.
[1] 张爱丹, 郭珍妮, 叶婧婧. 多色网点结构提花织物设计与色彩仿真评价[J]. 纺织学报, 2023, 44(07): 57-63.
[2] 程璐, 马崇启, 周惠敏, 王颖, 夏鑫. 基于视觉特性的色纺纱全光谱配色算法优化[J]. 纺织学报, 2022, 43(10): 38-44.
[3] 杨柳, 李羽佳, 张鑫, 何文婧, 童胜昊, 马磊, 张毅, 张瑞云. 色纺针织物紧密程度对颜色预测的影响[J]. 纺织学报, 2022, 43(05): 104-108.
[4] 谷迁, 袁理, 杨亚莉, 刘军平. 融合高级语义特征的色纺织物图像快速检索[J]. 纺织学报, 2022, 43(03): 89-94.
[5] 张爱丹, 郭珍妮, 汪阳子. 模块组合全显色结构提花织物设计与仿色优化比较[J]. 纺织学报, 2021, 42(10): 67-74.
[6] 许雪梅. 基于模拟退火算法改进遗传算法的织物智能配色[J]. 纺织学报, 2021, 42(07): 123-128.
[7] 裘柯槟, 陈维国, 周华. 用光谱成像技术与分光光度法测量织物颜色的比较分析[J]. 纺织学报, 2020, 41(11): 73-80.
[8] 程璐, 陈婷婷, 曹吉强, 王颖, 夏鑫. 基于光谱反射率的色纺纱计算机修色算法[J]. 纺织学报, 2020, 41(09): 39-44.
[9] 应双双, 裘柯槟, 郭宇飞, 周赳, 周华. 纺织品色彩管理色表测量数据的误差优化[J]. 纺织学报, 2020, 41(08): 74-80.
[10] 龚雪, 袁理, 刘军平, 杨亚莉, 刘沐黎, 柯政涛, 鄢煜尘. 混合色彩空间与多核学习的色纺织物组织点识别[J]. 纺织学报, 2020, 41(05): 58-65.
[11] 张戈, 周建, 王蕾, 潘如如, 高卫东. 用分光光度计法测量纤维颜色的影响因素[J]. 纺织学报, 2020, 41(04): 72-77.
[12] 杨红英, 惠志奎, 杨志晖, 张靖晶, 谢宛姿, 周金利. 基于汉风色典的不同色差公式的色差均匀性[J]. 纺织学报, 2020, 41(02): 103-108.
[13] 刘沐黎, 袁理, 杨亚莉, 刘军平, 程哲, 龚雪, 纪昌俊, 鄢煜尘. 基于混合色彩空间独立特征的色纺面料颜色表征模型[J]. 纺织学报, 2019, 40(09): 62-69.
[14] 赵博研, 赵玉珠. 光致变色纺织品的检测方法[J]. 纺织学报, 2019, 40(08): 124-129.
[15] 黄嘉俊, 柯薇, 王静, 邓中民. 基于计算机视觉的牛仔服装色差检测评级系统[J]. 纺织学报, 2019, 40(05): 163-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!