纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 64-70.doi: 10.13475/j.fzxb.20220605207

• 特约专栏:纺织科技前沿 • 上一篇    下一篇

抗菌防沾污生物防护材料的制备及其性能

夏勇1, 赵迎1, 徐利云1,2, 徐思峻1,2, 姚理荣1,2, 高强2()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.南通大学 安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
  • 收稿日期:2022-06-21 修回日期:2022-09-27 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 高强(1958—),男,研究员。主要研究方向为纤维材料、新型碳材料、产业用纺织品及纺织复合材料。E-mail:gao.q@ntu.edu.cn
  • 作者简介:夏勇(1997—),男,硕士生。主要研究方向为生物防护材料。
  • 基金资助:
    江苏省先进纺织工程技术中心创新基金项目(XJFZ/2021/6);中国博士后科学基金面上项目(2020M671580);江苏省博士后基金面上项目(2021K579C);南通市科技计划项目(MS12020050)

Preparation and properties of antibacterial and anti-contamination biological protective materials

XIA Yong1, ZHAO Ying1, XU Liyun1,2, XU Sijun1,2, YAO Lirong1,2, GAO Qiang2()   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2022-06-21 Revised:2022-09-27 Published:2023-01-15 Online:2023-02-16

摘要:

为保护医护人员生命健康安全,研制了一种兼具抗菌和阻隔功能的可重复使用生物防护材料。首先以纳米银(AgNPs)为抗菌剂,热塑性聚氨酯(TPU)为基体,通过静电纺丝技术制备载银TPU纳米纤维膜;然后以聚二甲基硅氧烷(PDMS)为疏水整理剂,涤纶织物为基材,通过等离子体刻蚀—浸轧PDMS—焙烘工艺制备防沾污织物;最后将制备的载银TPU纳米纤维膜与防沾污织物进行点胶复合制备生物防护材料。测试了生物防护材料的抗湿性能、透湿性能、防水性能及过滤性能等。结果表明:经过50次标准洗涤后,防沾污织物的水接触角达到143.1°;纳米银负载量为300 mg/kg的生物防护材料对大肠杆菌和金黄色葡萄球菌的抑菌率均达到99.99%,且沾湿等级达到5级,水蒸气透过量为2 654.8 g/(m2·24 h),断裂强力为450 N左右,静水压为53.6 kPa,过滤效率达到99%以上。

关键词: 防护服, 纳米银, 聚氨酯, 聚二甲基硅氧烷, 抗菌, 防沾污, 生物防护

Abstract:

Objective Virus epidemic takes place frequently worldwide, and the demand for medical protective clothing as an emergency epidemic prevention material is soaring. At present, the use of disposable protective clothing is a common practice, but it is difficult to deal with the medical wastes, which brings great load to the environment. In addition, medical staff are prone to sweltering, dizziness, nausea and other problems when carrying out high-intensity work. Therefore, there is a need for biological protective materials with high protection, high moisture permeability, washing resistance and applicability to the preparation of medical protective clothing.
Method Integrated design of biological protective materials was carried out with properties including high barrier, bacteria resistance, virus resistance, contamination resistance, high moisture permeability and washing resistance. Nano silver (AgNPs) antibacterial agent was prepared by chemical in-situ reduction with silver nitrate (AgNO3) as silver source and waterborne polyurethane (WPU) as protective agent. It was mixed into thermoplastic polyurethane (TPU) solution and electrospun to prepare silver-loaded TPU nanofiber membrane, which was used as the inner layer of biological protective material. With the help of plasma technology, nano-scale grooves were etched in the surface of polyester fiber, and polydimethylsiloxane (PDMS) was used as hydrophobic finishing agent to treat polyester fabric, and PDMS hydrophobic film was formed on its surface, and this was used as the outer layer of biological protective material. The inner layer and the outer layer were glued together and compounded to obtain a complete biological protective material.
Results The surface of pure TPU nanofiber membrane was smooth, while uniform AgNPs particles were seen on the surface of silver-loaded TPU nanofiber membrane(Fig.1), suggesting that silver nanoparticles were successfully loaded on the TPU nanofiber membrane. The original polyester fiber has a smooth and flat surface. After plasma treatment, obvious grooves appear in the surface. After hydrophobic treatment, PDMS film is formed on the fiber surface (Fig.3). After hydrophobic finishing, the water contact angle of polyester fabric reaches about 140°, and after washing for 50 cycles, there is no downward trend(Fig.5), which indicates that PDMS is firmly combined with polyester matrix after film formation. When the silver content of the bioprotective material is 200 mg/kg, after washing for 50 cycles, the antibacterial rates of the biological protective material to Escherichia coli and Staphylococcus aureus are 99.89% and 99.27%, respectively. When the silver content increased to 300 mg/kg, after washing for 50 cycles, the antibacterial rate to Escherichia coli and Staphylococcus aureus was 99.99%. (Tab.1). The spraying wetting grade of biological protective materials is grade 5, and it drops to grade 4 after 50 cycles of washing (Tab.2). After 50 cycles of washing, the moisture permeability and tensile property of the biological protective material hadn't changed obviously, the water vapor transmission rate kept 2 654.8 g/(m2·24 h), and the breaking strength kept around 450 N (Fig.6). After 50 cycles of washing, the filtration performance of the bioprotective material remained stable, and the waterproof performance declined slightly. The filtration efficiency of solid particles remained above 99%, and the hydrostatic pressure decreased from 73.5 kPa to 53.6 kPa (Fig.7).
Conclusion The biological protective material prepared by the above method can be possibly used for the development of reusable medical protective clothing with active antibacterial and antiviral functions while efficiently blocking, thus achieving the purpose of efficient protection. TPU nano-fiber membrane enables both micro-pore and molecular moisture conductions at the same time, and the subsequent dispensing compound technology ensures the high comfort of medical staff to the maximum extent. In the future, reusable medical protective clothing is expected to popularly used, and lightweight and portable temperature regulating devices can be possibly prepared by 3D printing technology, so as to endure a medical protective clothing with high protection, high moisture permeability, temperature regulation and contamination resistance.

Key words: protective clothing, nano silver, polyurethane, polydimethylsiloxane, antibacterial, anti-contamination, biological protection

中图分类号: 

  • TS101.4

图1

载银前后TPU纳米纤维膜形貌"

图2

载银前后TPU纳米纤维膜红外光谱"

图3

不同条件下处理的涤纶织物形貌"

图4

PDMS处理涤纶织物的能谱图"

图5

PDMS处理涤纶织物经不同次数洗涤后的水接触角"

表1

不同银含量的生物防护材料经50次洗涤后的抑菌率"

AgNPs负载量/
(mg·kg-1)
抑菌率/%
对大肠杆菌 对金黄色葡萄球菌
200 99.89 99.27
300 99.99 99.99
500 99.99 99.99

表2

不同试样的沾湿等级"

试样 水洗次数 沾湿等级/级
生物防护材料 0 5
10 5
30 4
50 4
未处理涤纶织物 2

图6

生物防护织物经不同次数洗涤后的透湿性能和拉伸性能"

图7

生物防护织物经不同次数洗涤后的防水性能和过滤性能"

[1] LI J H, LIU X G. The study of sustainable strategy in design of protective clothing and accessories after coronavirus (COVID-19) outbreak[J]. Journal of Physics Conference Series, 2021. DOI:10.1088/1742-6596/1790/1/012027.
doi: 10.1088/1742-6596/1790/1/012027
[2] NAZMUL K, SHAILA A, KATE L, et al. Sustainable personal protective clothing for healthcare applications: a review[J]. ACS Nano, 2020, 14(10): 12313-12340.
doi: 10.1021/acsnano.0c05537
[3] XU Q B, WU Y H, ZHANG Y Y, et al. Durable antibacterial cotton modified by silver nanoparticles and chitosan derivative binder[J]. Fibers and Polymers, 2016, 17(11): 1782-1789.
doi: 10.1007/s12221-016-6609-2
[4] XING Y, LI X H, ZHANG L, et al. Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film[J]. Progress in Organic Coatings, 2012, 73(2/3): 219-224.
doi: 10.1016/j.porgcoat.2011.11.005
[5] 董猛, 张德锁, 林红, 等. MHBP-OH纳米银的制备及其对棉织物的长效抗菌整理[J]. 纺织导报, 2016(5): 72-75.
DONG Meng, ZHANG Desuo, LIN Hong, et al. Preparation of MHBP-OH nano silver and its long-term antibacterial finishing for cotton fabric[J]. China Textile Leader, 2016(5): 72-75.
[6] SALAM A, HASSAN T, JABRI T, et al. Electrospun nanofiber-based Viroblock/ZnO/PAN hybrid antiviral nanocomposite for personal protective applications[J]. Nanomaterials, 2021. DOI:10.3390/nano11092208.
doi: 10.3390/nano11092208
[7] ZHU Y Q, SHEN C, LI J L, et al. Superhydrophobic polytetrafluoroethylene film deposited on solar selective absorber by electron beam evaporation[J]. Materials Chemistry and Physics, 2020. DOI:10.1016/j.matchemphys.2020.123828.
doi: 10.1016/j.matchemphys.2020.123828
[8] ROY S, ZHAI L D, KIM J, et al. A novel approach of developing sustainable cellulose coating for self-cleaning-healing fabric[J]. Progress in Organic Coatings, 2020. DOI:10.1016/j.porgcoat.2019.105500.
doi: 10.1016/j.porgcoat.2019.105500
[9] 徐利云, 殷伟伦, 邓佳雯, 等. 超疏水棉织物的等离子体制备工艺及性能[J]. 东华大学学报(自然科学版), 2019, 45(5): 650-657.
XU Liyun, YIN Weilun, DENG Jiawen, et al. Plasma preparation technology and properties of super-hydrophobic cotton fabric[J]. Journal of Donghua University (Natural Science), 2019, 45(5): 650-657.
[10] GE M Z, CAO C Y, LIANG F H, et al. A "PDMS-in-water" emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature[J]. Nanoscale Horizons, 2019, 5(1): 65-73.
doi: 10.1039/C9NH00519F
[1] 万颖萍, 王宗乾, 王英沣, 杨海伟, 吴开明, 谢伟. 抗菌羽绒的短流程制备及其性能[J]. 纺织学报, 2023, 44(01): 149-155.
[2] 朱晓荣, 何佳臻, 向攸慧, 王敏. 热防护服蓄热防护与放热危害双重特性的研究进展[J]. 纺织学报, 2023, 44(01): 228-237.
[3] 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55.
[4] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[5] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[6] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[7] 戴艳阳, 王诗潭, 王云仪, 李俊. 基于运动生物力学的防护服装活动性能研究进展[J]. 纺织学报, 2022, 43(11): 212-218.
[8] 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
[9] 李沐芳, 陈佳鑫, 曾凡佳, 王栋. 间隔织物基光热-热电复合材料的制备及其性能[J]. 纺织学报, 2022, 43(10): 65-70.
[10] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[11] 谢子文, 李家炜, 汪芬萍, 戚栋明, 严小飞, 朱晨凯, 赵磊, 何贵平. 有机硅改性水性聚氨酯丙烯酸酯杂化胶乳的制备及其在涂料印花中的应用[J]. 纺织学报, 2022, 43(08): 119-125.
[12] 杨文博, 张傲洁, 刘幽燕, 李青云. 聚氨酯泡沫固定化生物体系对活性蓝4的吸附脱色[J]. 纺织学报, 2022, 43(08): 132-139.
[13] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[14] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[15] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!