纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 79-85.doi: 10.13475/j.fzxb.20220606401

• 纺织工程 • 上一篇    下一篇

棉纱布被保暖性能的影响因素

张露杨1, 宋海波2, 孟晶1, 殷兰君2, 卢业虎1()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215006
    2.深圳全棉时代科技有限公司, 广东 深圳 518110
  • 收稿日期:2022-06-27 修回日期:2022-09-22 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 卢业虎(1986—),男,教授,博士。主要研究方向为智能和防护服装。E-mail: yhlu@suda.edu.cn
  • 作者简介:张露杨(1998—),女,硕士生。主要研究方向为服装舒适性。
  • 基金资助:
    江苏省高等学校基础科学(自然科学)重大项目(21KJA540004);苏州市科技计划项目(SS202147);南通市科技计划项目(JC2021004)

Influencing factors for thermal insulating properties of cotton gauze quilts

ZHANG Luyang1, SONG Haibo2, MENG Jing1, YIN Lanjun2, LU Yehu1()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. Shenzhen Purcotton Technology Co., Ltd., Shenzhen, Guangdong 518110, China
  • Received:2022-06-27 Revised:2022-09-22 Published:2023-07-15 Online:2023-08-10

摘要:

为提高人体睡眠热舒适性,改善睡眠质量,对不同参数的棉纱布被进行系统的保暖性能研究。借助出汗热平板纱布织物实验与出汗暖体假人被子实验,探究了棉纱布织物透气性、面密度、层数及水洗处理等因素对纱布被织物热阻的影响规律,并建立纱布被织物热阻与被子热阻的相关关系。结果表明:纱布被织物的热阻与其面密度呈明显的正相关线性关系,热阻与透气率相关性较低;棉被与纱布被的面密度相当的情况下,棉被的保暖性能更好,纱布被的透气性更好;纱布被织物的热阻与层数之间呈线性关系,层数越多热阻值越大;水洗处理后棉纱布被织物的热阻增加;纱布被织物热阻与纱布被子热阻呈显著的相关关系,当纱布被织物的总热阻较小(小于1.8 clo)时,二者近似呈线性关系。本文研究结果可为开发高质量棉纱布被提供参考。

关键词: 棉纱布被, 棉被, 出汗热平板, 热阻, 保暖性能, 透气性

Abstract:

Objective Studies on thermal insulating properties of quilts have been carried out aiming to improve the thermal comfort and sleep quality. Previous studies mainly focused on quilts with filling materials, and few research focused on non-filling quilts such as gauze quilt. In order to provide more understanding on comfortable sleeping microclimate, a systematic investigation on thermal insulating properties of several gauze quilts with different parameters was conducted.

Method 41 samples in total were provided, including 22 unwashed cotton gauze quilt fabric samples, 4 washed cotton gauze quilt fabric samples, 3 spunlaced cotton wadding samples, 6 cotton gauze quilt samples. The influences of air permeability, surface density and number of layers on heat resistance of cotton gauze quilts were analyzed by sweating hot plate tests and thermal manikin tests. The correlation between heat resistance of fabric and quilt was also established.

Results It was found that the heat resistance of both cotton gauze quilt samples and cotton spunlaced wadding samples have significant positive linear relationships with surface density. The heat resistance rose with the increase of surface density. The growth rate of the spunlaced cotton wadding quilts (0.006 1) was higher than that of cotton gauze quilts (0.001 7). Heat resistance of cotton gauze quilt samples decreased with the increasing of air permeability, exhibiting a low correlation, but the influence on thermal insulation was obvious when the air permeability was below 1 000 mm/s. The heat resistance of the spunlaced cotton wadding quilt showed a significant negative linear relationship with its air permeability. In addition, the air permeability and surface density presented an exponentially negative correlation. The change rate was constantly decreasing when surface density was more than 450 g/m2. Generally, the air permeability of each cotton gauze quilt was above 500 mm/s, higher than that of the spunlaced cotton wadding quilt. The surface fitting results (thermal insulation as dependent variable, air permeability and surface density as independent variables) revealed that heat resistance and air permeability exhibited a low correlation. The surface density demonstrated a significant influence on heat resistance, and the heat resistance of cotton gauze quilt exhibited a positive linear relationship with the number of cotton gauze fabric layers. The air permeability of cotton gauze quilt showed power function relationship with the number of fabric layers. The heat resistance of cotton gauze quilt was increased after washing, with the average increase of about 20%. After once machine washing in 20 ℃ water, the thickness and surface density of cotton gauze quilt was increased by 26.6% and 13.6% in average, respectively, whereas the air permeability was decreases by 8.7% in average. A significant non-linear relationship exists between the heat resistance of fabric samples and quilt samples (p<0.05), which can be approximately expressed by an exponential function. In particular, they show approximate a linear relationship when the heat resistance of fabric was less than 1.8 clo.

Conclusion The heat resistance of the cotton gauze quilts has a significant positive linear relationship with the surface density, exhibiting a negative and low correlated relationship with the air permeability. Therefore, surface density is more appropriate for the prediction of heat resistance value in engineering application. Under the same surface density, spunlaced cotton wadding quilt provides higher thermal insulating properties, while cotton gauze quilt provides bigger air permeability. The superimposition of cotton gauze fabric layers can produce thicker air gaps, resulting in higher thermal insulating property of cotton gauze quilt. Once machine washing has a positive effect on thermal insulating property of cotton gauze quilt by virtue of the increase of thickness and surface density after washing. Moreover, heat resistance of fabric samples can be adopted to predict the heat resistance of quilt, showing a significant non-linear correlation. These research findings can provide evidence for the design of cotton gauze quilts and usage guideline to achieve thermal comfort during sleeping.

Key words: cotton gauze quilt, spunlaced cotton wadding quilt, sweating hot plate, heat resistance, thermal insulating property, air permeability

中图分类号: 

  • TS941.75

表1

未水洗棉纱布被织物样品参数"

样品
编号
样品结构 样品
层数
样品
厚度/mm
单层纱布参数
单层纱布
位置
密度/
(根·(2.54 cm2)-1)
G1 双层纱布 2 1.240 50×50
G2 4层纱布 4 2.378 66×80
G3 4层纱布(粗纱) 2.004 64×59
G4 4层蜂巢 1.888 60×60
G5 4层纱布(2个2层织物叠放) 1.159 50×50
G6 4层斜纹纱布 1.979 第1、4层
第2、3层
42×42
42×21
G7 4层纱布(4个单层织物叠放) 0.941 30×30
G8 4层纱布(2个2层织物叠放) 1.246 60×60
G9 4层纱布(2个2层织物叠放) 1.086 80×65
G10 双层纱布+平纹皱布(2个2层织物叠放) 2.854 55×42
G11 6层纱布(2个3层织物叠放) 6 2.740 55×43
G12 6层纱布(2个3层织物叠放) 1.808 54×54
G13 6层提花纱布 2.273 28×33
G14 6层纱布 2.782 172×176
G15 6层加密纱布 3.297 210×230
G16 6层纱布 2.132 28×33
G17 6层纱布(6个单层织物叠放) 1.459 30×30
G18 8层纱布(2个4层织物叠放) 3.446 第1、4层
第2、3层
42×41
8
G19 8层一体纱布 3.895 180×174
G20 8层一体蜂巢 4.164 210×206
G21 10层纱布 10 6.371 232×232
G22 12层纱布 12 6.019 232×232

表2

棉被织物样品裁剪前参数"

样品编号 样品质量/g 样品尺寸(长×宽)/m
C1 730 1.25×1.55
C2 1 300 1.50×2.00
C3 850 1.00×1.20

表3

多层棉纱布被样品与其对应的织物样品参数"

被子样品
编号
层数 纱布被种类 单层纱布密度/
(根·(2.54 cm2)-1)
Q1-a 4 4层斜纹纱布被 126×126
Q2-a 4层纱布夹棉被 100×100
Q3-a 6 6层纱布被 154×166
Q4-a 6层加密纱布被 210×210
Q5-a 8 8层印花纱布被 210×206
Q6-a 12 12层纱布被 232×232

图1

热阻与面密度的拟合结果"

图2

热阻与透气率的拟合结果"

图3

透气率与面密度的拟合结果"

图4

热阻与叠加层数的拟合结果"

图5

叠加样品的热阻及透气率与层数的关系"

图6

水洗处理对热阻的影响"

表4

水洗处理前后棉纱布被织物样品参数"

样品
编号
水洗处理前 水洗处理后
透气率/(mm·s-1) 厚度/mm 面密度/(g·m-2) 透气率/(mm·s-1) 厚度/mm 面密度/(g·m-2)
G6 1 945.24 1.978 232.7 1 716.93 2.330 249.5
G13 2 046.27 2.273 252.4 1 908.29 3.052 279.6
G16 1 973.75 2.132 245.5 1 829.26 2.734 296.6
G21 969.63 5.789 532.0 880.99 7.302 614.8

图7

织物热阻与被子热阻的拟合关系"

[1] WANG Y, LIU Y, SONG C, et al. Appropriate indoor operative temperature and bedding micro climate temperature that satisfies the requirements of sleep thermal comfort[J]. Building and Environment, 2015, 92: 20-29.
doi: 10.1016/j.buildenv.2015.04.015
[2] BISCHOF W, MADSEN T L, CLAUSEN J, et al. Sleep and the temperature field of the bed[J]. Journal of Thermal Biology, 1993, 18(5/6): 393-398.
doi: 10.1016/0306-4565(93)90064-Z
[3] 刘玉萍, 卢业虎, 王来力. 被服系统热舒适性研究进展[J]. 纺织学报, 2020, 41(1): 190-196.
LIU Yuping, LU Yehu, WANG Laili. Research progress in thermal comfort of bedding system[J]. Journal of Textile Research, 2020, 41(1): 190-196.
[4] LIN Z, DENG S. A study on the thermal comfort in sleeping environments in the subtropics:developing a thermal comfort model for sleeping environments[J]. Building & Environment, 2008, 43(1): 70-81.
[5] MCCULLOUGH E A, ZBIKOWSKI P J, JONES B W. Measurement and prediction of the insulation provided by bedding systems[J]. ASHRAE Transactions, 1987, 93: 1055-1068.
[6] 王革辉, 赵媛媛. 几种新型絮料的保暖性[J]. 上海纺织科技, 2014, 42(9): 59-61.
WANG Gehui, ZHAO Yuanyuan. Thermal insulation of several new types of wadding[J]. Shanghai Textile Science & Technology, 2014, 42(9): 59-61.
[7] 刘玉萍. 被服系统舒适温标的建立及影响因素分析[D]. 苏州: 苏州大学, 2020: 14-16.
LIU Yuping. The development of comfort temperature for bedding system and analysis of influencing factors[D]. Suzhou: Soochow University, 2020: 14-16.
[8] 付贤文, 高晶. 鹅、鸭绒纤维形态结构差异及对保暖性能的影响[J]. 纺织学报, 2011, 32(12): 10-14.
FU Xianwen, GAO Jing. Difference of morphological structures between goose down fiber and duck down fiber and their effect on thermal retaining property[J]. Journal of Textile Research, 2011, 32(12): 10-14.
[9] 郭小娟, 任丽然, 李美真. 几种被胎絮片的保暖性能研究[J]. 毛纺科技, 2013, 41(5): 61-64.
GUO Xiaojuan, REN Liran, LI Meizhen. Research of several fiber thermal performance[J]. Wool Textile Journal, 2013, 41(5): 61-64.
[10] 张华玲, 姚大军, 洪诗尧. 低气压环境被服系统总热阻计算模型[J]. 土木建筑与环境工程, 2017, 39(4): 6-10.
ZHANG Hualing, YAO Dajun, HONG Shiyao. Calculation model of total thermal resistance of bedding and clothing system in low pressure environment[J]. Journal of Civil and Environmental Engineering, 2017, 39(4): 6-10.
[11] 黄敏华, 郝小礼, 张开通, 等. 睡眠过程中不同被子组合的热阻[J]. 湖南科技大学学报(自然科学版), 2020, 35(4): 32-37.
HUANG Minhua, HAO Xiaoli, ZHANG Kaitong, et al. The heat resistance of different quilt combinations during sleep[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2020, 35(4): 32-37.
[12] 李建全, 周桂丰, 宋海波. 一种全棉水洗纱布被: 201420432994.X[P]. 2014-12-17.
LI Jianquan, ZHOU Guifeng, SONG Haibo. All-cotton washing gauze quilt: 201420432994.X[P]. 2014-12-17.
[13] 张贤国. 一种婴儿全棉水洗纱布被: 201811283787.1[P]. 2019-03-29.
ZHANG Xianguo. Infant all-cotton washed gauze quilt: 201811283787.1[P]. 2019-03-29.
[14] 李建全. 一种恒温纱布被: 201921470047.9[P]. 2020-07-21.
LI Jianquan. Constant-temperature gauze quilt: 201921470047.9[P]. 2020-07-21.
[15] 余新雨, 李建华, 金旺, 等. 聚甲醛纤维/棉混纺织物的舒适性能探究[J]. 纺织导报, 2021(12): 67-70.
YU Xinyu, LI Jianhua, JIN Wang, et al. Comfort performance of POM/cotton blended fabric[J]. China Textile Leader, 2021(12): 67-70.
[16] 邱冠雄, 张源, 王中伟, 等. 针织品热舒适性研究[J]. 纺织学报, 1991, 12(4): 17-20.
QIU Guanxiong, ZHANG Yuan, WANG Zhongwei, et al. Thermal comfort of knitted fabric[J]. Journal of Textile Research, 1991, 12(4): 17-20.
[17] 郭宇微. 针织牛仔面料生产工艺与服用性能研究[D]. 无锡: 江南大学, 2008: 16-21.
GUO Yuwei. Research on manufacturing technique and wearing properties of knitted jeans fabric[D]. Wuxi: Jiangnan University, 2008:16-21.
[1] 张文欢, 江舒, 李俊. 羽绒服装系统的面积因子预测及适用性分析[J]. 纺织学报, 2022, 43(11): 148-153.
[2] 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
[3] 江舒, 李俊. 婴儿被服热舒适性研究进展[J]. 纺织学报, 2022, 43(08): 189-196.
[4] 王慧云, 王萍, 李媛媛, 张岩. 中空多孔异形聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 50-55.
[5] 董甜甜, 王蕾, 高卫东. 防羽面料孔径及分布特征与透气性和防钻绒性的关系[J]. 纺织学报, 2020, 41(12): 49-53.
[6] 刘捷, 仝胜录, 李小端, 刘立国, 何加浩, 李文斌, 熊日华. 织物基载体在含盐废水蒸发处理中的应用[J]. 纺织学报, 2020, 41(08): 81-87.
[7] 苏文桢, 卢业虎, 王方明, 宋文芳. 新型充气夹克的研制与保暖性能评价[J]. 纺织学报, 2020, 41(05): 140-145.
[8] 肖平, 张昭华, 周莹, 刘佳锴, 唐颢源. 手臂活动角度对服装局部热阻的影响[J]. 纺织学报, 2020, 41(02): 109-114.
[9] 苏文桢, 宋文芳, 卢业虎, 杨秀月. 充气防寒服的保暖性能[J]. 纺织学报, 2020, 41(02): 115-118.
[10] 魏艳红, 刘新金, 谢春萍, 苏旭中, 张钟唏. 聚酯长丝/棉复合纱斜纹织物的保形性及服用性能[J]. 纺织学报, 2019, 40(12): 39-44.
[11] 胡紫婷, 郑晓慧, 冯铭铭, 王英健, 刘莉, 丁松涛. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11): 145-150.
[12] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[13] 陈智杰, 周鹏, 杜春晓, 金黔宏, 戚栋明, 向忠. 丙烯酸酯-有机硅/有机颜料亚微胶囊在涂料印花中的应用[J]. 纺织学报, 2019, 40(03): 102-108.
[14] 胡勇杰. 纳米二氧化硅/聚醚共聚乙酰胺防水透气涂层织物的研制及其性能[J]. 纺织学报, 2018, 39(10): 104-109.
[15] 邓辉 师云龙 胡源盛 钱晓明 范金土. 开放式局部热阻测试系统的实现[J]. 纺织学报, 2018, 39(09): 127-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!