纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 21-29.doi: 10.13475/j.fzxb.20220606609
SHI Xiang1,2,3, WANG Zhen1,2,3, PENG Huisheng1,2,3()
摘要:
显示器件是电子设备不可或缺的人机交互平台,其结构朝着轻量化、柔性化、集成化方向发展。为了实现显示功能与织物的集成,同时保持织物的柔软、透气导湿、适应复杂形变等特性,围绕与织物结构有效匹配的发光材料和器件设计,综述了织物显示器件领域的发展,阐述了被应用于织物显示的发光材料及其工作原理,总结了平面、纤维和经纬交织3种织物显示器件的结构,讨论了不同材料和结构对织物显示器件的发光和显示性能、柔性、稳定性的影响,最后展望了织物显示技术的发展方向,以期为纺织和显示领域交叉融合发展提供理论和应用参考。
中图分类号:
[1] |
KOO Ja Hoon, KIM Dong Chan, SHIM Hyung Joon, et al. Flexible and stretchable smart display: materials, fabrication, device design, and system integration[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201801834.
doi: 10.1002/adfm.201801834 |
[2] |
WANG Jiangxin, LEE Pooi See. Progress and prospects in stretchable electroluminescent devices[J]. Nanophotonics, 2017, 6(2): 435-451.
doi: 10.1515/nanoph-2016-0002 |
[3] |
ZHANG Dongdong, HUANG Tianyu, DUAN Lian. Emerging self-emissive technologies for flexible displays[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201902391.
doi: 10.1002/adma.201902391 |
[4] |
LEE S M, KWON J H, KWON S. et al. A review of flexible OLEDs toward highly durable unusual displays[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 1922-1931.
doi: 10.1109/TED.2017.2647964 |
[5] |
TAKEI Kuniharu, HONDA Wataru, HARADA Shingo et al. Toward flexible and wearable human-interactive health-monitoring devices[J]. Advanced Healthcare Materials, 2015, 4(4): 487-500.
doi: 10.1002/adhm.201400546 pmid: 25425072 |
[6] |
CASTANO Lina M, FLATAU Alison B. Smart fabric sensors and e-textile technologies: a review[J]. Smart Materials and Structures, 2014. DOI: 10.1088/0964-1726/23/5/053001.
doi: 10.1088/0964-1726/23/5/053001 |
[7] |
ZENG Wei, SHU Lin, LI Qiao, et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications[J]. Advanced Materials, 2014, 26(31): 5310-5336.
doi: 10.1002/adma.201400633 |
[8] |
FUKAGAWA Hirohiko, SASAKI Tsubasa, TSUZUKI Toshimitsu, et al. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201706768.
doi: 10.1002/adma.201706768 |
[9] |
CONAGHAN Patrick J, MATTHEWS Campbell S B, CHOTARD Florian, et al. Highly efficient blue organic light-emitting diodes based on carbene-metal-amides[J]. Nature Communications, 2020. DOI: 10.1038/s41467-020-15369-8.
doi: 10.1038/s41467-020-15369-8 |
[10] |
DUPUIS R D, KRAMES M R. History, development, and applications of high-brightness visible light-emitting diodes[J]. Journal of Lightwave Technology, 2008, 26(9): 1154-1171.
doi: 10.1109/JLT.2008.923628 |
[11] |
JEONG Junseok, JIN Dae Kwon, CHOI Joonghoon, et al. Transferable, flexible white light-emitting diodes of GaN p-n junction microcrystals fabricated by remote epitaxy[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106075.
doi: 10.1016/j.nanoen.2021.106075 |
[12] |
LIU Yuchao, LI Chensen, REN Zhongjie, et al. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes[J]. Nature Reviews Materials, 2018. DOI: 10.1038/natrevmats.2018.20.
doi: 10.1038/natrevmats.2018.20 |
[13] |
KIM Jin Hoon, PARK Jin Woo. Intrinsically stretchable organic light-emitting diodes[J]. Science Advances, 2021. DOI: 10.1126/sciadv.abd9715.
doi: 10.1126/sciadv.abd9715 |
[14] |
YOUSSEF Kareem, LI Ying, O'KEEFFE Samantha, et al. Fundamentals of materials selection for light-emitting electrochemical cells[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201909102.
doi: 10.1002/adfm.201909102 |
[15] |
SANDSTR M Andreas, DAM Henrik F, KREBS Frederik C, et al. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating[J]. Nature Communications, 2012. DOI: 10.1038/ncomms2002.
doi: 10.1038/ncomms2002 |
[16] |
ARUMUGAM S, LI Y, PEARCE J, et al. Spray-coated organic light-emitting electrochemical cells realized on a standard woven polyester cotton textile[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1717-1722.
doi: 10.1109/TED.2021.3059809 |
[17] |
WANG Lin, XIAO Lian, GU Haoshuang, et al. Advances in alternating current electroluminescent devices[J]. Advanced Optical Materials, 2019. DOI: 10.1002/adom.201801154.
doi: 10.1002/adom.201801154 |
[18] |
BREDOL Michael, SCHULZE DIECKHOFF Hubert. Materials for powder-based AC-electroluminescence[J]. Materials, 2010, 3(2): 1353-1374.
doi: 10.3390/ma3021353 |
[19] |
LARSON C, PEELE B, LI S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074.
doi: 10.1126/science.aac5082 pmid: 26941316 |
[20] |
SHI Xiang, ZHOU Xufeng, ZHANG Ye, et al. A self-healing and stretchable light-emitting device[J]. Journal of Materials Chemistry C, 2018, 6(47): 12774-12780.
doi: 10.1039/C8TC02828A |
[21] |
CHOI Seungyeop, KWON Seonil, KIM Hyuncheol, et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-06733-8.
doi: 10.1038/s41598-017-06733-8 |
[22] |
YIN Da, CHEN Zhiyu, JIANG Nairong, et al. Highly flexible fabric-based organic light-emitting devices for conformal wearable displays[J]. Advanced Materials Technologies, 2020. DOI: 10.1038/s41598-017-06733-8.
doi: 10.1038/s41598-017-06733-8 |
[23] |
JEONG So Yeong, SHIM Hye Rin, NA Yunha, et al. Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles[J]. NPJ Flexible Electronics, 2021. DOI: 10.1038/s41528-021-00112-0.
doi: 10.1038/s41528-021-00112-0 |
[24] |
ZHANG Zhitao, SHI Xiang, LOU Huiqing, et al. A stretchable and sensitive light-emitting fabric[J]. Journal of Materials Chemistry C, 2017, 5(17): 4139-4144.
doi: 10.1039/C6TC05156A |
[25] |
HU Bin, LI Dapeng, ALA Okan, et al. Textile-based flexible electroluminescent devices[J]. Advanced Functional Materials, 2011, 21(2): 305-311.
doi: 10.1002/adfm.201001110 |
[26] |
WU Yunyun, MECHAEL Sara S, LERMA Cecilia, et al. Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns[J]. Matter, 2020, 2(4): 882-895.
doi: 10.1016/j.matt.2020.01.017 |
[27] |
WANG Lie, FU Xuemei, HE Jiqing, et al. Application challenges in fiber and textile electronics[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201901971.
doi: 10.1002/adma.201901971 |
[28] |
HARDY Dorothy A, MONETA Andrea, SAKALYTE Viktorija, et al. Engineering a costume for performance using illuminated LED-yarns[J]. Fibers, 2018. DOI: 10.3390/fib6020035.
doi: 10.3390/fib6020035 |
[29] |
CHERENACK Kunigunde, ZYSSET Christoph, KINKELDEI Thomas, et al. Woven electronic fibers with sensing and display functions for smart textiles[J]. Advanced Materials, 2010, 22(45): 5178-5182.
doi: 10.1002/adma.201002159 |
[30] |
REIN Michael, FAVROD Valentine Dominique, HOU Chong, et al. Diode fibres for fabric-based optical communications[J]. Nature, 2018, 560(7717): 214-218.
doi: 10.1038/s41586-018-0390-x |
[31] | KONCAR Vladan. Optical fiber fabric displays[J]. Optics and Photonics News, 2005, 16(4): 40-44. |
[32] |
O'CONNOR B, AN K H, ZHAO Y, et al. Fiber shaped light emitting device[J]. Advanced Materials, 2007, 19(22): 3897-3900.
doi: 10.1002/adma.200700627 |
[33] |
KWON Seonil, KIM Hyuncheol, CHOI Seungyeop, et al. Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process[J]. Nano Letters, 2018, 18(1): 347-356.
doi: 10.1021/acs.nanolett.7b04204 pmid: 29210590 |
[34] |
ZHANG Zhitao, GUO Kunping, LI Yiming, et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell[J]. Nature Photonics, 2015, 9(4): 233-238.
doi: 10.1038/nphoton.2015.37 |
[35] |
YANG Chunhe, SUN Qingjiang, QIAO Jing, et al. Ionic liquid doped polymer light-emitting electrochemical cells[J]. The Journal of Physical Chemistry B, 2003, 107(47): 12981-12988.
doi: 10.1021/jp034818t |
[36] |
WANG Jiangxin, YAN Chaoyi, CAI Guofa, et al. Extremely stretchable electroluminescent devices with ionic conductors[J]. Advanced Materials, 2016, 28(22): 4490-4496.
doi: 10.1002/adma.201504187 |
[37] |
ZHANG Xin, WANG Feng. Recent advances in flexible alternating current electroluminescent devices[J]. APL Materials, 2021. DOI: 10.1063/5.0040109.
doi: 10.1063/5.0040109 |
[38] |
DIAS Tilak, MONARAGALA Ravi. Development and analysis of novel electroluminescent yarns and fabrics for localized automotive interior illumination[J]. Textile Research Journal, 2012, 82(11): 1164-1176.
doi: 10.1177/0040517511420763 |
[39] |
LIANG Guojin, YI Ming, HU Haibo, et al. Coaxial-structured weavable and wearable electroluminescent fibers[J]. Advanced Electronic Materials, 2017. DOI: 10.1002/aelm.201700401.
doi: 10.1002/aelm.201700401 |
[40] |
ZHANG Zhitao, CUI Liyuan, SHI Xiang, et al. Textile display for electronic and brain-interfaced communications[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201800323.
doi: 10.1002/adma.201800323 |
[41] |
KIM Jaemin, SHIM Hyung Joon, YANG Jiwoong, et al. Ultrathin quantum dot display integrated with wearable electronics[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201700217.
doi: 10.1002/adma.201700217 |
[42] |
SHI Xiang, ZUO Yong, ZHAI Peng, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849): 240-245.
doi: 10.1038/s41586-021-03295-8 |
[43] |
KIM Minkoo, JEON Dong-Hwan, KIM Jeong-Sik, et al. Optimum display luminance depends on white luminance under various ambient illuminance conditions[J]. Optical Engineering, 2018. DOI: 10.1117/1.oe.57.2.024106.
doi: 10.1117/1.oe.57.2.024106 |
[44] |
HWANG Yong Ha, KWON Seonil, SHIN Jeong Bin, et al. Bright-multicolor, highly efficient, and addressable phosphorescent organic light-emitting fibers: toward wearable textile information displays[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202009336.
doi: 10.1002/adfm.202009336 |
[1] | 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163. |
[2] | 赵智伟, 王子希, 杨世玉, 胡毅. 基于锦纶滤膜喷墨印花制备镓-铟合金液态金属电路[J]. 纺织学报, 2022, 43(12): 102-108. |
[3] | 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21. |
[4] | 王津, 胡开瑞, 张刘飞, 陈磊. 纤维材料在柔性可穿戴锌电池中的应用进展[J]. 纺织学报, 2022, 43(10): 192-199. |
[5] | 李沐芳, 陈佳鑫, 曾凡佳, 王栋. 间隔织物基光热-热电复合材料的制备及其性能[J]. 纺织学报, 2022, 43(10): 65-70. |
[6] | 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96. |
[7] | 高晓飞, 齐立哲, 孙云权. 面向柔性面料立体缝纫的随形机械手设计[J]. 纺织学报, 2022, 43(09): 27-33. |
[8] | 王秋实, 何彩婷, 王珊, 陈美玉, 梁高勇, 孙润军. 织物增强柔性防刺复合材料的研究进展[J]. 纺织学报, 2022, 43(08): 183-188. |
[9] | 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(07): 47-54. |
[10] | 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206. |
[11] | 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184. |
[12] | 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68. |
[13] | 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29. |
[14] | 刘杰, 高志. 基于柔性薄膜传感器的服装压力检测仪研制[J]. 纺织学报, 2021, 42(12): 159-165. |
[15] | 陈智杰, 虞一浩, 符晔, 雷鹏飞, 蒋继康, 戚栋明. 柔性阻燃聚酰胺湿法涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(11): 110-116. |
|