纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 19-26.doi: 10.13475/j.fzxb.20220606801

• 纤维材料 • 上一篇    下一篇

丝素蛋白/壳聚糖复合纤维膜的制备与应用

雷彩虹1,2, 俞林双1, 金万慧3, 朱海霖1,2, 陈建勇1()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
    3.湖北省纤维检验局, 湖北 武汉 430000
  • 收稿日期:2022-06-28 修回日期:2023-02-02 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 陈建勇(1958—),男,教授,博士。主要研究方向为蚕丝纤维材料的功能化利用。E-mail:cjy@zstu.edu.cn
  • 作者简介:雷彩虹(1975—),女,讲师,博士。主要研究方向为丝素生物材料的结构和性能。
  • 基金资助:
    国家自然科学基金项目(51273181);浙江省基础公益研究计划项目(LGC21E030003);浙江省教育厅一般科研项目(20200066-F);浙江理工大学科研启动项目(19202448-Y)

Preparation and application of silk fibroin/chitosan composite fiber membrane

LEI Caihong1,2, YU Linshuang1, JIN Wanhui3, ZHU Hailin1,2, CHEN Jianyong1()   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
    3. Hubei Province Fibre Inspection Bureau, Wuhan, Hubei 430000, China
  • Received:2022-06-28 Revised:2023-02-02 Published:2023-11-15 Online:2023-12-25

摘要:

为进一步提升丝素基纤维膜的抗菌性能,以六氟异丙醇和三氟乙酸为溶剂分别溶解丝素蛋白和壳聚糖,制备一定质量比的混合纺丝溶液,然后利用静电纺丝技术制备丝素蛋白/壳聚糖(SF/CS)复合纤维膜。对不同质量比下复合纤维膜的微观形貌、吸水率、止血性能和抗菌性能进行测试与分析。结果表明:SF/CS复合纤维膜中纤维呈光滑致密、无串珠的网状结构;随着壳聚糖添加量的增加,复合纤维膜的抗菌性呈显著增强趋势,当丝素蛋白与壳聚糖质量比为5∶2时,复合纤维膜对大肠杆菌和金黄色葡萄球菌的抑菌圈直径分别为(11.88±0.04)和(15.34±0.04) mm,抑菌率分别达到(73.93±0.85)%和(93.27±0.97)%;同时,在该条件下制备的复合纤维膜具有较高的吸水率((967.59±9.76)%),止血性能优于市售止血纱布。

关键词: 纳米纤维膜, 静电纺丝, 丝素蛋白, 壳聚糖, 止血材料, 抗菌材料

Abstract:

Objective Silk fibroin (SF) is a macromolecular protein derived from silk. In recent years, silk-based biomaterials have been studied and applied in the field of wound repair and become the preferred material for wound dressing. However, single silk fibroin-based biomaterials have weak antibacterial performance, which limits their application in wound dressing. Meanwhile, chitosan (CS) has non-toxicity, good biocompatibility and strong antibacterial properties, and has a wide range of applications in the field of medical dressings. Electrospinning technology has potential development in the field of wound dressing and is potential for developing fiber membrane materials with excellent performance.

Method With hexafluoropropanol and trifluoroacetic acid as solvent, silk fibroin was dissolved to prepare chitosan blended spinning solution. Electrospinning was adopted to prepare the composite fiber membrane, and the silk fibroin/chitosan composite fiber membrane microstructure was studied to determine bibulous rate and to characterize the hemostatic and antibacterial properties.

Results Before ethanol soaking, the fibers of pure silk fibroin membrane SF were smooth and loose, without bead shape, but after ethanol soaking, the fibers became dense and reticular. After the addition of chitosan, the SF/CS composite fiber membrane fibers became thinner. The network structure of electrospinning was conducive to the increase and proliferation of cell binding sites when the fiber membrane touches the wound (Fig. 1). The absorption peaks of amide I at 1 625 cm-1 and amide II at 1 520 cm-1 were present for the composite fiber membranes. Chitosan has sec-alcohol hydroxyl at 1 029 cm-1 υ(C—O). It was seen that the typical characteristic peaks of CS and SF appeared for SF/CS composite fiber membranes, indicating that SF and CS were physically mixed and no new substances were produced (Fig. 2). In the process of increasing chitosan content, the water absorption of composite fiber membrane were increased followed by a decrease. Compared with hemostatic gauze, the absorbency of the composite fiber membrane was significantly improved (Fig. 3). With the increase of chitosan content, the blood absorbed by SF/CS composite fiber membrane increased, and the color of supernatant gradually became lighter. Its in vitro coagulation-promoting capability was superior to that of hemostatic gauze (Fig. 4). With the increase of chitosan content, the coagulation time of SF/CS composite fiber membrane was gradually shortened, among which, SF/CS4(the mass ratio of SF to CS of 5∶2) composite fiber membrane had the shortest coagulation time and the best coagulation effect (Fig. 5). With the increase of chitosan content, the antibacterial effect of SF/CS composite fiber membrane on the two strains was gradually enhanced. The antibacterial effect of SF/CS composite fiber membrane on Staphylococcus aureus was obviously better than that on Escherichia coli. When the mass ratio of silk fibroin to chitosan was 5∶2, the bacteria inhibition rate against Escherichia coli was (73.93±0.85)%, the bacteria inhibition zone diameter was (11.88±0.04) mm, and the bacteria inhibition zone diameter against Staphylococcus aureus was (93.27±0.97)%, the bacteria inhibition zone diameter was (15.34±0.04) mm (Fig. 6 and Fig. 7).

Conclusion Silk fibroin/chitosan composite fiber membranes with different mass ratios were prepared by electrospinning technology, and their micromorphology, water absorption, hemostatic and bacteria inhibition properties were investigated. The antibacterial activity and hemostatic performance of composite fiber membranes are closely related to the content of chitosan. When the mass ratio of silk fibroin to chitosan is 5∶2, the composite fiber membrane SF/CS4 has higher water absorption and better antibacterial effect. Meanwhile, the results of hemostatic performance test show that the composite fiber membrane SF/CS4 has smaller in vitro coagulation index and shorter in vitro coagulation time. Hemostatic performance is better than hemostatic gauze. The composite fiber membrane material prepared with silk fibroin-based has good performance, which is worth further exploration for application for wound healing.

Key words: nanofiber membrane, electrospinning, silk fibroin, chitosan, hemostatic material, antibacterial material

中图分类号: 

  • TS141.8

图1

复合纤维膜的扫描电镜照片"

图2

复合纤维膜的红外光谱图"

图3

复合纤维膜的吸水率"

图4

复合纤维膜的体外凝血活性"

图5

复合纤维膜的体外凝血效果"

图6

复合纤维膜的抑菌圈直径"

图7

复合纤维膜对金黄色葡萄球菌和大肠杆菌的抗菌效果"

[1] CHOUHAN D, MANDAL B B. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside[J]. Acta Biomaterialia, 2020, 103:24-51.
doi: S1742-7061(19)30800-1 pmid: 31805409
[2] WEI W, LIU J, PENG Z B, et al. Gellable silk fibroin-polyethylene sponge for hemostasis[J]. Artificial Cells, 2020, 48(1):28-36.
[3] PATIL P P, REAGAN M R, BOHARA R A. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings[J]. International Journal of Biological Macromolecules, 2020, 164:4613-4627.
doi: 10.1016/j.ijbiomac.2020.08.041 pmid: 32814099
[4] TEUSCHL A H, ZIPPERLE J, HUBER Gries C, et al. Silk fibroin based carrier system for delivery of fibrinogen and thrombin as coagulant supplements[J]. Journal of Biomedical Materials Research: Part A, 2017, 105(3):687-696.
doi: 10.1002/jbm.v105.3
[5] 熊亮, 陈锦涛, 韦加娜. 丝素蛋白电纺抗菌止血材料的制备及其性能评价[J]. 广东化工, 2018, 45(11):67-69.
XIONG Liang, CHEN Jintao, WEI Jiana. Preparation of silk fibroin electrospun antimicrobial hemostatic material and its performance evaluation[J]. Guangdong Chemical Industry, 2018, 45(11):67-69.
[6] 马烨. 壳聚糖医用敷料的制备及性能研究[D]. 南京: 南京理工大学, 2018:16-18.
MA Ye. Research on preparation and performance of chitosan wound dressing[D]. Nanjing: Nanjing University of Science and Technology, 2018:16-18.
[7] 白雪, 毕华, 张雪峰, 等. 壳聚糖改性及其用于止血海绵的研究进展[J]. 高分子通报, 2021(3):13-19.
BAI Xue, BI Hua, ZHANG Xuefeng, et al. Progress of chitosan study in hemostatic sponge[J]. Chinese Polymer Bulletin, 2021(3):13-19.
[8] 廖硕, 何星. 静电纺丝用于制备止血材料的研究进展[J]. 广东化工, 2018, 45(7):153-154.
LIAO Shuo, HE Xing. Research progress in preparation of hemostatic materials by electrospinning[J]. Guangdong Chemical Industry, 2018, 45(7):153-154.
[9] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(5):1-8.
ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers[J]. Journal of Textile Research, 2021, 42(5):1-8.
doi: 10.1177/004051757204200101
[10] 赵新哲, 王绍霞, 高晶, 等. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4):33-41.
ZHAO Xinzhe, WANG Shaoxia, GAO Jing, et al. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes[J]. Journal of Textile Research, 2021, 42(4):33-41.
doi: 10.1177/004051757204200107
[11] LI Mengna, LI Na, QIU Weiwang, et al. Nitric oxide-releasing L-tryptophan and L-phenylalanine based poly(ester urea)s electrospun composite mats as antibacterial and antibiofilm dressing for wound healing[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2021.109484.
[12] VARSHNEY N, SAHI A K, PODDAR S, et al. Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: fabrication and characteriza-tion[J]. International Journal of Biological Macromolecules, 2020, 160:112-127.
doi: 10.1016/j.ijbiomac.2020.05.090
[13] 范小红, 徐国平, 刘玉, 等. 棉织带丝素蛋白丝质化后处理工艺[J]. 现代纺织技术, 2020, 28(2):76-79.
FAN Xiaohong, XU Guoping, LIU Yu, et al. Treatment process of cotton ribbon with silk fibroin[J]. Advanced Textile Technology, 2020, 28(2):76-79.
[14] 赵新飞, 宋立新, 熊杰. 丝素蛋白/聚己内酯共混复合纳米纤维拉伸性能研究[J]. 现代纺织技术, 2017, 25(2):1-5.
ZHAO Xinfei, SONG Lixin, XIONG Jie. Study on tensile property of silk fibroin/polycaprolactone blend composite nanofibers[J]. Advanced Textile Technology, 2017, 25(2):1-5.
[15] HUANG X, FU Q, DENG Y, et al. Surface roughness of silk fibroin/alginate microspheres for rapid hemostasis in vitro and in vivo[J]. Carbohydrate Polymers, 2021.DOI: 10.1016/j.carbpol.2020.117256.
[16] CHENG K, TAO X, QI Z, et al. Highly absorbent silk fibroin protein xerogel[J]. ACS Biomaterials Science and Engineering, 2021, 7(8):3594-3607.
doi: 10.1021/acsbiomaterials.1c00467
[17] WANG Z, HU W, DU Y, et al. Green gas-mediated cross-linking generates biomolecular hydrogels with enhanced strength and excellent hemostasis for wound healing[J]. ACS Applied Materials & Interfaces, 2020, 12(12):13622-13633.
[18] LI T T, ZHONG Y, YAN M, et al. Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning[J]. Nanomaterials, 2019.DOI:10.3390/nano9050714.
[19] QIAO Ziwen, LV X, HE S, et al. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings[J]. Bioactive Materials, 2021, 6(9):2829-2840.
doi: 10.1016/j.bioactmat.2021.01.039 pmid: 33718665
[20] ZHANG M, WANG D, JI N, et al. Bioinspired design of sericin/chitosan/Ag@MOF/GO hydrogels for efficiently combating resistant bacteria, rapid hemostasis, and wound healing[J]. Polymers, 2021. DOI: 10.3390/polym13162812.
[21] MA Y, XIN L, TAN H, et al. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017, 81:522-531.
[22] 许宗溥. 壳聚糖/丝素微纤维复合材料以及功能性丝素微纤维的研究[D]. 杭州: 浙江大学, 2018: 52-63.
XU Zongbo. Study of chitosan/silk microfibers composite materials and functional silk microfibers[D]. Hangzhou: Zhejiang University, 2018: 52-63.
[23] 黄如翼. 基于壳聚糖的抗菌止血复合敷料[D]. 武汉: 华中师范大学, 2018: 20-28.
HUANG Ruyi. Novel hydrogel wound dressing with hemostatic and antimicrobial properties based on chitosan[D]. Wuhan: Central China Normal University, 2018: 20-28.
[24] XU Z, GAO Y, LI J, et al. Bio-macromolecules/modified-halloysite composite hydrogel used as multi-functional wound dressing[J]. Smart Materials in Medicine, 2021, 2: 134-144.
doi: 10.1016/j.smaim.2021.03.004
[25] XING J, WANG Q, HE T, et al. Polydopamine-assisted immobilization of copper ions onto hemodialysis membranes for anti-microbial[J]. ACS Applied Bio Materials, 2018, 1(5):1236-1243.
doi: 10.1021/acsabm.8b00106
[26] 成悦, 胡颖捷, 付译鋆, 等. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(3):31-37.
CHENG Yue, HU Yingjie, FU Yiyun, et al. Preparation and properties of antibacterial hemostatic nonwoven elastic bandage[J]. Journal of Textile Research, 2022, 43(3):31-37.
[1] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[2] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[3] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[4] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[5] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[6] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[7] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[8] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[9] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[10] 张子凡, 李鹏飞, 王建南, 许建梅. 丝素蛋白载药纳米粒的研究进展[J]. 纺织学报, 2023, 44(10): 205-213.
[11] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[12] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[13] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
[14] 罗元泽, 戴梦男, 李蒙, 俞杨销, 王建南. 丝素蛋白基药物载体的应用研究进展[J]. 纺织学报, 2023, 44(09): 213-222.
[15] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!