纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 232-239.doi: 10.13475/j.fzxb.20220607302
宋功吉1, 王煜煜1, 王善龙1, 王建南1,2, 许建梅1,2()
SONG Gongji1, WANG Yuyu1, WANG Shanlong1, WANG Jiannan1,2, XU Jianmei1,2()
摘要:
为促进碳纳米管在修复神经损伤中的应用,以碳纳米管掺杂的纺织高聚物材料制备导电性人工神经导管的相关研究为基础,分析了碳纳米管的纳米形貌和导电性能在促进神经再生中的作用,概述了碳纳米管表面改性的作用与方法,综述了碳纳米管的生物医学应用、复合碳纳米管高聚物制备导电性人工神经导管的方法以及其神经再生效果。最后指出:碳纳米管用于制备导电性人工神经导管时应使其与生物体组织作用的界面保持纳米形貌;碳纳米管进行功能化改性后更有利于受损神经的再生与修复;应关注复合碳纳米管制备的神经导管在降解过程中可能带来的体内代谢毒性;碳纳米管掺杂高聚物在导电性神经导管的制备中具有突出的优势与广阔的应用前景。
中图分类号:
[1] |
JIN J, LIMBURG S, JOSHI S K, et al. Peripheral nerve repair in rats using composite hydrogel-filled aligned nanofiber conduits with incorporated nerve growth factor[J]. Tissue Eng Part A, 2013, 19(19/20): 2138-2146.
doi: 10.1089/ten.tea.2012.0575 |
[2] |
VIJAYAVENKATARAMAN S. Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods[J]. Acta Biomaterialia, 2020, 106: 54-69.
doi: S1742-7061(20)30081-7 pmid: 32044456 |
[3] | 孙国平, 罗选翔, 潘彬. 人工神经导管治疗周围神经损伤的材料类型和应用现状[J]. 中国骨与关节损伤杂志, 2021, 36(3): 334-336. |
SUN Guoping, LUO Xuanxiang, PAN Bin. Material types and application status of artificial nerve conduits for peripheral nerve injury[J]. Chinese Journal of Bone and Joint, 2021, 36(3): 334-336. | |
[4] | 马丕波, 梅德轩. 生物医用纺织材料研究应用与进展[J]. 服装学报, 2022, 7(3): 189-195. |
MA Pibo, MEI Dexuan. Research, application and progress of biomedical textile materials[J]. Journal of Clothing Research, 2022, 7(3): 189-195. | |
[5] |
MOSKOW J, FERRIGNO B, MISTRY N, et al. Review: bioengineering approach for the repair and regeneration of peripheral nerve[J]. Bioactive Materials, 2019, 4: 107-113.
doi: 10.1016/j.bioactmat.2018.09.001 pmid: 30723843 |
[6] |
AHN H S, HWANG J Y, KIM M S, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve[J]. Acta Biomaterialia, 2015, 13: 324-334.
doi: 10.1016/j.actbio.2014.11.026 |
[7] | REDONDO-GOMEZ C, LEANDRO-MORA R, BLANCH-BERMUDEZ D, et al. Recent advances in carbon nanotubes for nervous tissue regeneration[J]. Advances in Polymer Technology, 2020 (9): 1098-2329. |
[8] | CARVALHO C R, OLIVEIRA J M, REIS R L. Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit[J]. Frontiers in Bioengineering and Biotechnology, 2019. DOI: 10.3389/fbioe.2019.00337. |
[9] | RATHINAVEL S, PRIYADHARSHINI K, PANDA D. A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application[J]. Materials Science and Engineering, 2021. DOI:10.1016/jmseb.2021.115095. |
[10] | SERPELL C J, KOSTARELOS K, DAVIS B G. Can carbon nanotubes deliver on their promise in biology harnessing unique properties for unparalleled applications[J]. ACS Combinatorial Science, 2016, 2(4): 190-200. |
[11] |
PAMPALONI N P, RAGO I, CALARESU I, et al. Transparent carbon nanotubes promote the outgrowth of enthorino-entate projections in lesioned organ slice cultures[J]. Developmental Neurobiology, 2019, 80(9/10): 316-331.
doi: 10.1002/dneu.v80.9pt10 |
[12] |
FABBRO A, PRATO M, BALLERINI L. Carbon nanotubes in neuroregeneration and repair[J]. Advanced Drug Delivery Reviews, 2013, 65(15): 2034-2044.
doi: 10.1016/j.addr.2013.07.002 pmid: 23856411 |
[13] | DVIR T, TIMKO B P, KOHANE D S, et al. Nanotechnological strategies for engineering complex tissues[J]. Nanotechnol, 2011, 6(1):13-22. |
[14] | SORKIN R, GREENBAUM A, DAVID-PUR M, et al. Process entanglement as a neuronal anchorage mechanism to rough surfaces[J]. Nanotechnology, 2009. DOI:10.1088/0957-4484/20/1/015101. |
[15] | MAZZATENTA A, GIUGLIANO M, CAMPIDELLI S, et al. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits[J]. The Journal of Neuroscience, 2007, 26: 6931-6936. |
[16] | ZHU W, YE T, LEE S J, et al. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation[J]. Nanomedicine Nanotechnology Biology & Medicine, 2017, 14(7): 2485-2494. |
[17] |
RAY W Z, MAHAN M A, GUO D Z, et al. An update on addressing important peripheral nerve problems: challenges and potential solutions[J]. Acta Neurochirurgica, 2017, 159(9): 1765-1773.
doi: 10.1007/s00701-017-3203-3 |
[18] |
MALARKEY E B, FISHER K A, BEKYAROVA E, et al. Conductive single-walled carbon nanotube substrates modulate neuronal growth[J]. Nano Letters, 2009, 9: 264-268.
doi: 10.1021/nl802855c pmid: 19143503 |
[19] |
MATTSON M P, HADDON R C, RAO A M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth[J]. Journal of Molecular Neuroscience, 2000, 14: 175-182.
doi: 10.1385/JMN:14:3:175 pmid: 10984193 |
[20] |
ZHANG X, PRASAD S, NIYOGI S, et al. Guided neurite growth on patterned carbon nanotubes[J]. Sens and Actuators, 2005, 106: 843-850.
doi: 10.1016/j.snb.2004.10.039 |
[21] | KANG S, HERZBERG M, RODRIGUES D F, et al. Antibacterial effects of carbon nanotubes: size does matter[J]. ACS Journal of Surfaces & Colloids, 2008, 24(13): 6409-6413. |
[22] |
ZHAO M L, LI D J, YUAN L, et al. Differences in cytocompatibility and hemocompatibility between carbon nanotubes and nitrogen-doped carbon nanotubes[J]. Carbon, 2011, 49(9): 3125-3133.
doi: 10.1016/j.carbon.2011.03.037 |
[23] | MOTTAGHITALAB F, FAROKHI M, ZAMINY A, et al. A biosynthetic nerve guide conduit based on silk/SWCNT/fibronectin nanocomposite for peripheral nerve regeneration[J]. Plos One, 2013, 8(9): 56-65. |
[24] | LI S S, HE H, JIAO Q C, et al. Applications of carbon nanotubes in drug and gene delivery[J]. Progress in Chemistry, 2008, 20(11): 1798-1803. |
[25] | YU W W, JIANG X Q, CAI M, et al. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration[J]. Nanotechnology, 2014. DOI:10.1088/0957-4484/25/16/165102. |
[26] |
HWANG J Y, SHIN U S, JANG W C, et al. Biofunctionalized carbon nanotubes in neural regeneration: a mini-review[J]. Nanoscale, 2013, 5: 487-497.
doi: 10.1039/C2NR31581E |
[27] |
CENGIZ B, SANYAL R, SANYAL A. Tailoring aqueous dispersibility and biofunctionalization of carbon nanotubes using maleimide-containing clickable poly-mers[J]. ACS Applied Polymer Materials, 2021, 3: 5707-5716.
doi: 10.1021/acsapm.1c00977 |
[28] |
HU H, NI Y C, MONTANA V, et al. Chemically functionalized carbon nanotubes as substrates for neuronal growth[J]. Nano Lett, 2004, 4: 507-511.
doi: 10.1021/nl035193d pmid: 21394241 |
[29] |
HEISTER E, LAMPRECHT C, NEVES V, et al. Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments[J]. ACS Nano, 2010, 4(5): 2615-2626.
doi: 10.1021/nn100069k pmid: 20380453 |
[30] |
ROMAN J A, NIEDZIELKO T L, HADDON R C, et al. Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury[J]. Neurotrauma, 2011, 28: 2349-2362.
doi: 10.1089/neu.2010.1409 |
[31] |
LACERDA L, BIANCO A, PRATO M, et al. Carbon nanotubes as nanomedicines: from toxicology to pharmacology[J]. Advanced Drug Delivery Reviews, 2006, 58(14):1460-1470.
doi: 10.1016/j.addr.2006.09.015 pmid: 17113677 |
[32] |
PATI F, GANTELIUS J, SVAHN H A. 3D bioprinting of tissue/organ models[J]. Angew Chem Int Ed Engl, 2016, 55(15): 4650-4665.
doi: 10.1002/anie.v55.15 |
[33] |
XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938 |
[34] |
CHEN Z Z, LI D C, LU B H, et al. Fabrication of artificial bioactive bone using rapid prototyping[J]. Rapid Prototyping Journal, 2004, 10(5): 327-333.
doi: 10.1108/13552540410562368 |
[35] | LEE S J, ZHU W, NOWICKI M, et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration[J]. Journal of Neural Engineering, 2018, 15(1): 16-18. |
[36] |
ZHOU Z F, LIU X F, WU W, et al. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds[J]. Biomaterials Science, 2018, 6: 2375-2385.
doi: 10.1039/c8bm00553b pmid: 30019709 |
[37] |
ZANG R, YANG S T. Multiwalled carbon nanotube-coated polyethylene terephthalate fibrous matrices for enhanced neuronal differentiation of mouse embryonic stem cells[J]. Journal of Materials Chemistry B, 2013, 1(5): 646-653.
doi: 10.1039/c2tb00157h pmid: 32260768 |
[38] | RIBEIRO J, CASEIRO A R, PEREIRA T. Evaluation of PVA biodegradable electric conductive membranes for nerve regeneration in axonotmesis injuries: the rat sciatic nerve animal model[J]. Journal of Biomedical Materials Researc, 2017, 105(5): 1267-1280. |
[39] | 孙洪吉. 胶原/碳纳米管复合物薄膜对胚胎大鼠皮层神经元突起发育和神经干细胞分化的影响[D]. 北京: 中国人民解放军医学院, 2014: 17-36. |
SUN Hongji. The effect of collegan-carbon nanotube composite film on embryonic cortical neurons development and neural stem cell differentiation[D]. Beijing: Chinese People's Liberation Army Medical College, 2014: 17-36. | |
[40] | JOSEPH J, KRISHNAN A G, CHERIAN A M, et al. Transforming nanofibers into woven nanotextiles for vascular application[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19449-19458. |
[41] | MATSUMOTO K, SATO C, NAKA Y, et al. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes[J]. Nanotechnology, 2010. DOI: 10.1088/0957-4484/21/11/115101. |
[42] |
BARREJON M, MARCHESAN S, ALEGRET N, et al. [LL]Carbon nanotubes for cardiac tissue regeneration: state of the art and perspectives[J]. Carbon, 2021, 184:641-650.
doi: 10.1016/j.carbon.2021.08.059 |
[43] | JORDE L, LI Z H, POPPELWERTH A. Biofunctionalization of carbon nanotubes for reversible site-specific protein immobilization[J]. Journal of Applied Physics, 2021. DOI:10.1063/5.0035871. |
[44] | ZHOU Y, FANG Y, RAMASAMY R P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development[J]. Sensors, 2019. DOI: 10.3390/s19020392. |
[45] |
KOSTARELOS K, BIANCO A, PRATO M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics[J]. Nature Nanotechnology, 2020, 4(10): 627-633.
doi: 10.1038/nnano.2009.241 |
[46] |
ZHU Y Z, LIU X M, YEUNG K W K, et al. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructurest[J]. Applied Surface Science, 2017, 400: 14-23.
doi: 10.1016/j.apsusc.2016.12.158 |
[47] | DI W, PAK E S, WINGARD C J, et al. Multiwalled carbon nanotubes inhibit regenerative axon growth of dorsal root ganglia neurons of mice[J]. Neuroence Letters, 2012, 507(1):72-77. |
[1] | 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82. |
[2] | 黄锦波, 邵灵达, 祝成炎. 炭化三维间隔棉织物的制备及其电加热性能[J]. 纺织学报, 2023, 44(04): 139-145. |
[3] | 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18. |
[4] | 李龙, 吴磊, 林思伶. 捻度对棉/氨纶/银丝包芯纱性能的影响[J]. 纺织学报, 2023, 44(01): 100-105. |
[5] | 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86. |
[6] | 戴家木, 聂渡, 李素英, 张瑜, 张伟, 刘蓉. 纤维基人工神经导管的研究进展[J]. 纺织学报, 2022, 43(12): 190-196. |
[7] | 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212. |
[8] | 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40. |
[9] | 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35. |
[10] | 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206. |
[11] | 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91. |
[12] | 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193. |
[13] | 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49. |
[14] | 姚若彤, 赵婧媛, 闫一欣, 段立蓉, 王恬, 严佳, 张淑军, 李刚. 新型可降解编织结构神经再生导管的制备及其性能[J]. 纺织学报, 2022, 43(02): 125-131. |
[15] | 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80. |
|