纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 36-44.doi: 10.13475/j.fzxb.20220700501

• 纤维材料 • 上一篇    下一篇

聚合物热解制备玻璃纤维表面碳纳米涂层及其导电性

谭晶1, 石鑫1, 于景超1, 程礼盛1, 杨涛2, 杨卫民1()   

  1. 1.北京化工大学 机电工程学院, 北京 100029
    2.中国化学纤维工业协会, 北京 100022
  • 收稿日期:2022-07-04 修回日期:2023-08-15 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 杨卫民(1965—),男,教授,博士。主要研究方向为高分子材料加工成型与先进制造。E-mail:yangwm@mail.buct.edu.cn
  • 作者简介:谭晶(1980—),女,教授,博士。主要研究方向为聚合物基复合材料加工方法及设备。
  • 基金资助:
    国家自然科学基金面上项目(52073012)

Preparation and electrical conductivity of carbon nanocoating on glass fiber surface by polymer pyrolysis

TAN Jing1, SHI Xin1, YU Jingchao1, CHENG Lisheng1, YANG Tao2, YANG Weimin1()   

  1. 1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2. China Chemical Fibers Association, Beijing 100022, China
  • Received:2022-07-04 Revised:2023-08-15 Published:2023-11-15 Online:2023-12-25

摘要:

为实现玻璃纤维的导电功能化应用,分别采用聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)为聚合物固态碳源,利用化学气相沉积在玻璃纤维基体表面制备碳纳米涂层得到导电玻璃纤维。借助扫描电子显微镜、拉曼光谱仪、X射线光电子能谱仪、单纤维强力仪、电阻率测试仪研究不同碳源及制备温度对碳纳米涂层导电玻璃纤维的表面化学结构、结合性能、力学性能及导电性能的影响规律。结果表明:利用聚合物固态碳源沉积的碳纳米涂层可以紧密包覆在玻璃纤维表面,且没有裂纹等结构缺陷,涂层在热震循环10~15次内表现出较好的结合性能,不易出现脱落、起泡等结构缺陷,且以PVC为碳源制备的碳纳米涂层与玻璃纤维的结合性优于以PET为碳源制备的碳纳米涂层;导电玻璃纤维的力学性能较原纤维存在一定的降低,形成的碳纳米涂层为具有一定缺陷的sp2杂化多层类石墨烯结构;碳纳米涂层赋予玻璃纤维优异的导电性,在700~950 ℃的制备温度区间内,玻璃纤维的电阻随温度升高而显著下降,在950 ℃时以PET 为碳源制备的碳纳米涂层玻璃纤维电阻为602.10 Ω/cm,以PVC为碳源制备的碳纳米涂层玻璃纤维电阻为181.65 Ω/cm。说明在玻璃纤维表面制备碳纳米涂层可赋予玻璃纤维优异的导电性,固态碳源的使用为废弃塑料垃圾的高价值回收提供一定参考。

关键词: 高分子聚合物, 固态碳源, 玻璃纤维, 碳纳米涂层, 化学气相沉积, 聚对苯二甲酸乙二醇酯, 聚氯乙烯

Abstract:

Objective The glass fiber belongs to non-metallic insulation materials, and carbon nanomaterials have excellent electrical conductivity. In order to study the influence of carbon nanocoating on glass fiber with common plastics as carbon source and to further expand the application fields of carbon nanomaterials and glass fiber, glass fiber and carbon nanomaterials were combined to obtain carbon nanocoated glass fibers.

Method Polyethylene terephthalate(PET) or polyvinyl chloride(PVC) polymer was used as a solid carbon source to prepare carbon nanocoating on glass fiber by chemical vapor deposition. Carbon nanocoated glass fibers were prepared at 700, 750, 800, 850, 900 and 950 ℃. Scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal shock experiment, single fiber strength instrument and resistivity instrument were adopted to characterize the fiber properties.

Results The surface of glass fiber was obviously observed at 700 ℃ but carbon nanocoating was not obvious. The black carbon nanocoating with metallic luster became more obvious and the preparation effect became better with the increase of preparation temperature (Fig. 2). SEM characterization further confirmed that the carbon nanocoating was successfully prepared and the coating surface was smooth and tightly coated on the surface of glass fiber (Fig. 3). For the carbon nanocoating on glass fiber prepared from PET and PVC, the intensity ratios of D peak to G peak were 0.942 6 and 0.904 6, respectively. The carbon nanocoating had a multilayer graphene-like structure with a tendency to pile up, and the defect density of carbon nanocoating prepared from PVC was smaller in Raman spectra (Fig. 4). The ratios of sp2 C=C to sp3 C—C were 6.428 1 and 6.821 3, respectively, further indicating that the carbon nanocoating prepared from PVC had fewer defects in XPS (Fig. 5 and Tab. 1). In the thermal shock experiment, no structural defect appeared in 10 cycles, the carbon nanocoating prepared from PET began to show structural defects after 15 cycles. The carbon nanocoating prepared from PET and PVC showed the whole sheet spalling, lamellar structure adhesion and granular debris after 20 cycles. It was also found that the defect structure of the carbon nanocoating prepared by PET was more obvious (Fig. 6). The fracture stresses of the raw glass fiber and the glass fiber with carbon nanocoating prepared by PET and PVC were 929.29, 649.00 and 719.73 MPa, respectively, and the fracture stresses were reduced by 30.17% and 22.55%, respectively. The glass fiber with carbon nanocoating prepared from PVC had slightly better mechanical property than that prepared from PET, and no significant difference was found in mechanical property between the two types of fibers in practical application (Fig. 7). The resistance of the initial glass fiber was 7.485×108 Ω/cm, and the resistance of glass fiber with carbon nanocoating prepared from PET and PVC at 950 ℃ was 602.10 and 181.65 Ω/cm, respectively (Fig. 8).

Conclusion PET and PVC are adopted to prepare carbon nanocoating on the glass fiber successfully. The coating can be closely coated on the glass fiber without cracks and faults. The two types of carbon nanocoating show good bonding performance within 10-15 thermal shock cycles and the bonding property of carbon nanocoating prepared from PVC is better than that prepared from PET. No significant difference exists in the mechanical property of fibers. The coating quality improves with the increase of preparation temperature in the range of 700-950 ℃. The carbon nanocoating has a sp2 hybrid multilayer graphene-like structure with certain defects, and the carbon nanocoating prepared from PVC has fewer defects. The glass fiber with carbon nanocoating has excellent electrical conductivity, and the resistance decreases significantly with the increase of temperature in the range of 700-950 ℃. Finally, PET, PVC and other polymers are used as solid carbon sources for carbon nanocoating on glass fiber, which is of great significance for the achieving of electrical conductivity of the glass fiber and other functional applications, and for high value recycling of waste plastics.

Key words: polymer, solid carbon source, glass fiber, carbon nanocoating, chemical vapor deposition, polyethylene terephthalate, polyvinyl chloride

中图分类号: 

  • O622.1

图1

用PET和PVC制备玻璃纤维碳纳米涂层过程示意图"

图2

不同碳源在不同温度下制备的碳纳米涂层玻璃纤维"

图3

玻璃纤维原丝及碳纳米涂层玻璃纤维SEM照片"

图4

950 ℃时碳纳米涂层玻璃纤维Raman谱图"

图5

950 ℃下制备的碳纳米涂层玻璃纤维的XPS谱图"

表1

950 ℃下制备的碳纳米涂层玻璃纤维XPS峰相对含量"

碳源 相对含量/%
全谱图 C 1s 分峰拟合图
O 1s C 1s sp2 C=C sp3 C—C C=O/C—O
PET 13.28 82.07 77.89 12.13 9.97
PVC 4.90 92.73 84.38 12.37 3.25

图6

不同热震循环次数下碳纳米涂层玻璃纤维的SEM照片"

图7

玻璃纤维原丝及碳纳米涂层玻璃纤维的拉伸曲线"

图8

碳纳米涂层玻璃纤维电阻变化"

[1] 饶志远. 石墨烯/玻璃纤维制备及其性能研究[D]. 南京: 南京航空航天大学, 2019: 3.
RAO Zhiyuan. The research on the preparation and properties of reduced graphene oxide/glass composite fiber[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 3.
[2] 阮润女, 程浩南. 玻璃纤维及其制品的应用与发展[J]. 产业用纺织品, 2018, 36(7):38-41, 46.
RUAN Runnv, CHENG Haonan. Application and development of glass fiber and its products[J]. Technical Textiles, 2018, 36(7): 38-41, 46.
[3] 刘国强. 导电玻璃纤维的制备与性能研究[D]. 上海: 东华大学, 2015: 13-20.
LIU Guoqiang. The prepartion and electrical properties of conductive glass fibers[D]. Shanghai: Donghua University, 2015: 13-20.
[4] 段宏基. 聚丙烯/镀镍玻璃纤维导电复合材料的制备及性能研究[C]// 郭超, 杨雅琦, 刘亚青. 2014年全国高分子材料科学与工程研讨会论文集. 成都: 四川大学, 2014: 270-272.
DUAN Hongji. Preparation and characterization of polypropylene/nickel coated glass fiber conductive composite[C]// GUO Chao, YANG Yaqi, LIU Yaqing. Proceedings of the 2014 National Symposium on Polymer Materials Science and Engineering. Chengdu: Sichuan University, 2014: 270-272.
[5] 高晓东, 杨卫民, 程礼盛, 等. 导电玻璃纤维及其功能复合材料研究进展[J]. 复合材料学报, 2021, 38(1): 36-44.
GAO Xiaodong, YANG Weimin, CHENG Lisheng, et al. Recent research progress in conductive glass fiber and polymer-based functional composites[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 36-44.
[6] 薛志宏, 刘鹏, 高叶玲. 废旧塑料回收与再利用现状研究[J]. 塑料科技, 2021, 49(4):107-110.
XUE Zhihong, LIU Peng, GAO Yeling. The development status of waste plastic recycling and application[J]. Plastics Science and Technology, 2021, 49(4): 107-110.
[7] 柯伟席, 王澜. 废旧PVC塑料的回收利用[J]. 塑料制造, 2009 (9):51-56.
KE Weixi, WANG Lan. Recycling of waste PVC materials[J]. Plastic Manufacture, 2019 (9): 51-56.
[8] GONG J, CHEN X, TANG T. Recent progress in controlled carbonization of (waste) polymers[J]. Progress in Polymer Science, 2019, 94:1-32.
doi: 10.1016/j.progpolymsci.2019.04.001
[9] YANG Z, ZHANG Q, LUO G, et al. Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays[J]. Applied Physics A, 2010, 100(2): 533-540.
doi: 10.1007/s00339-010-5868-9
[10] SHARMA S, KALITA G, HIRANO R, et al. Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition[J]. Carbon, 2014, 72:66-73.
doi: 10.1016/j.carbon.2014.01.051
[11] RUAN G, SUN Z, PENG Z, et al. Growth of graphene from food, insects, and waste[J]. ACS Nano, 2011, 5(9):7601-7607.
doi: 10.1021/nn202625c pmid: 21800842
[12] 田恐虎. 聚合物基石墨烯复合材料的制备和电磁屏蔽性能研究[D]. 合肥: 中国科学技术大学, 2017: 18-22.
TIAN Konghu. Study on the preparation and electromagnetic shielding properties of polymer-matrix/graphene composites[D]. Hefei: University of Science and Technology of China, 2017: 18-22.
[13] 陆豪. 石墨烯包覆玻璃纤维复合材料的制备[D]. 济南: 济南大学, 2017: 1-4.
LU Hao. Preparation of graphene oxide coated glass fiber reinforced composites[D]. Ji'nan: University of Jinan, 2017: 1-4.
[14] 泰钰. 导电玻璃纤维织物及其环氧树脂复合材料的制备与性能研究[D]. 太原: 中北大学, 2017: 10.
TAI Yu. Study on the preparation and properties of conductive glass fabrics and their epoxy resin composites[D]. Taiyuan: North University of China, 2017: 10.
[15] FANG M, XIONG X, HAO Y, et al. Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method[J]. Journal of Materials Science & Technology, 2019, 35(9):1989-1995.
[16] HE D, FAN B, ZHAO H, et al. Design of electrically conductive structural composites by modulating aligned CVD-grown carbon nanotube length on glass fibers[J]. ACS Applied Materials & Interfaces, 2017, 9(3):2948-2958.
[17] GAO X, CHENG L, TAN J, et al. Conductive nanocarbon-coated glass fibers[J]. The Journal of Physical Chemistry C, 2020, 124(32):17806-17810.
doi: 10.1021/acs.jpcc.0c03948
[18] BUEKENS A G, HUANG H. Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes[J]. Resources, Conservation and Recycling, 1998, 23(3):163-181.
doi: 10.1016/S0921-3449(98)00025-1
[19] 张雪, 白雪峰, 赵明. 废塑料热解特性研究[J]. 化学与粘合, 2015 (2):107-110.
ZHANG Xue, BAI Xuefeng, ZHAO Ming. Study on pyrolysis characteristics of waste plastics[J]. Chemistry and Adhesion, 2015 (2):107-110.
[20] LEE J H, SONG K W, PARK M H, et al. Graphene growth at the interface between Ni catalyst layer and SiO2/Si substrate[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(7):6468-6471.
doi: 10.1166/jnn.2011.4449
[21] MEDINA Henry, LIN Yungchang, JIN Chuanhong, et al. Metal-free growth of nanographene on silicon oxides for transparent conducting applications[J]. Advanced Functional Materials, 2012, 22:2123-2128.
doi: 10.1002/adfm.v22.10
[22] 王若钦, 周金萍, 潘伟超, 等. 石墨烯新型材料研究进展[J]. 化工新型材料, 2020, 48: 11-13.
WANG Ruoqin, ZHOU Jinping, PAN Weichao, et al. Research progress of new graphene material[J]. New Chemical Materials, 2020, 48: 11-13.
[23] 杨勇辉. 石墨烯的制备、表征及机理研究[D]. 绵阳: 西南科技大学, 2011: 15.
YANG Yonghui. Preparation, characterizetion and mechanism of graphene[D]. Mianyang: Southwest University of Science and Technology, 2011: 15.
[1] 谢艳霞, 张唯强, 徐亚宁, 赵书涵, 尹雯萱, 张文强, 韩旭. 商用聚对苯二甲酸乙二醇酯短纤维中低聚物析出机制及影响因素[J]. 纺织学报, 2024, 45(01): 65-73.
[2] 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98.
[3] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
[4] 范洋瑞, 钱建华, 徐凯杨, 王澳, 陶正龙. 基于氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的界面聚合改性[J]. 纺织学报, 2023, 44(07): 33-41.
[5] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[6] 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117.
[7] 廖云珍, 朱亚楠, 葛明桥, 孙同明, 张欣宇. 聚对苯二甲酸乙二醇酯/SrAl2O4:Eu2+,Dy3+含杂纤维醇解及其回收产物性能[J]. 纺织学报, 2023, 44(02): 44-54.
[8] 尹喆, 赵海浪, 徐红, 毛志平, 谭玉静. 纺织品中喹啉含量的快速测定[J]. 纺织学报, 2022, 43(12): 125-130.
[9] 李宝洁, 朱元昭, 钟毅, 徐红, 毛志平. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112.
[10] 杨辉宇, 周敬伊, 段子健, 徐卫林, 邓波, 刘欣. 原子层沉积在纺织品表面多功能改性研究进展[J]. 纺织学报, 2022, 43(09): 195-202.
[11] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[12] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[13] 竺铝涛, 郝丽, 沈伟, 祝成炎. 基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析[J]. 纺织学报, 2022, 43(07): 75-80.
[14] 郭珊珊, 郝恩全, 李宏杰, 王霖琳, 蒋金华, 陈南梁. 聚氯乙烯膜结构复合材料的光氧老化行为及评价[J]. 纺织学报, 2022, 43(06): 1-8.
[15] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!