纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 126-132.doi: 10.13475/j.fzxb.20220704001

• 染整与化学品 • 上一篇    下一篇

氮硼掺杂碳量子点/异氰酸酯型微胶囊复合整理棉织物及其防紫外线性能

帅旗, 孙硕, 成世杰, 张宏伟, 左丹英()   

  1. 武汉纺织大学 材料科学与工程学院, 湖北 武汉 430200
  • 收稿日期:2022-07-13 修回日期:2023-03-21 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 左丹英(1976—),女,教授,博士。主要研究方向为高分子分离膜材料的制备与应用研究。E-mail: wtums8866@163.com
  • 作者简介:帅旗(1998—),男,硕士生。主要研究方向为功能纺织纤维。
  • 基金资助:
    湖北省自然科学基金项目(2018CFB267)

Effect of isocyanate microcapsules on UV protection of carbon quantum dot finished cotton fabrics

SHUAI Qi, SUN Shuo, CHENG Shijie, ZHANG Hongwei, ZUO Danying()   

  1. School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2022-07-13 Revised:2023-03-21 Published:2023-08-15 Online:2023-09-21

摘要:

为提高棉织物的防紫外线性能及其耐水洗性能,采用氮硼掺杂碳量子点(BN-CQDs)和异氰酸酯型微胶囊对棉织物进行喷涂-干燥-辗轧-干燥整理,在辗轧过程中微胶囊中芯材异佛尔酮二异氰酸酯与棉织物表面的羟基和碳量子点表面的羟基、羧基或者氨基进行反应,将碳量子点固定于棉织物表面,且微胶囊的壁材聚氨酯形成涂层。对微胶囊的粒径、分散情况、棉织物结构、防紫外线性能及其耐久性进行了表征和检测。结果表明:经过BN-CQDs与异氰酸酯型微胶囊混合溶液整理后的棉织物相较于原织物其紫外线防护系数(UPF)有较大提升,UPF值最高达到36,UVA和UVB透过率低至2.57%和2.29%,比原棉织物的UPF值提高了207.7%;整理后的织物经过水洗20次,其UPF值仍达32,表现出较好的耐水洗性能。

关键词: 碳量子点, 异氰酸酯型微胶囊, 棉织物, 防紫外线性能, 耐水洗性能

Abstract:

Objective Cotton fabrics have the advantages of breathable moisture permeability and comfort, and is widely used for summer clothing. However, cotton fabrics are weak in UV protection. It is known that excessive ultraviolet irradiation, particularly in the summer, causes great harm to the human body, but the common anti-ultraviolet finishing agent is easy to be washed off during laundering. It is necessary to improve the fastness of anti-ultraviolet agents on cotton fabrics. In this research, BN-CQDs and isocyanate microcapsules are used to finish cotton fabric.

Method BN-CQDs were fixed to the fabric using microcapsule core material isophorone diisocyanate. In this research, the structure and surface morphology of finished cotton fabric and microcapsules were studied, and characterized by Fourier infrared spectroscopy, three-purpose ultraviolet analyzer and video microscope. In addition, the UV protection factor (UPF) of the finished cotton fabric was measured to examine the effect of the volume proportion of different modified liquid on the UV protection and UV water-resistant properties of the fabric. The moisture permeability of the cotton fabric was tested to study whether the finished fabric was qualified in the moisture permeability.

Results Isocyanate group and —NH appeared in the prepared microcapsules at 2 257 cm-1 and 3 365 cm-1, respectively, while the isocyanate group was stronger in the pure core material and there was no —NH (Fig. 1). Isocyanate-type microcapsules showed smooth surface without wrinkles, particle size of about 200 nm and relatively concentrated distribution, core material mass fraction of microcapsules reaches 42%, and encapsulation efficiency is 75% (Fig. 2, Fig. 3 and Fig. 4). As the content of microcapsules in the modified solution increased, the strength of the hydroxyl group in the finished fabric also decreased (Fig. 5). The original fabric appeared almost white under ultraviolet lamp, while the cotton fabric after finishing illustrated bright blue fluorescence. The fluorescence of pure BN-CQDs finishing fabric became weaker sharply after 20 times of washing. However, after the same washing, the fluorescence intensity of the BN-CQDs/ microcapsules composite reinforced by the finished fabric was only reduced slightly, and the blue fluorescence of microcapsules was also slightly improved with the increase of microcapsule content in the modified solution (Fig. 6). The UPF value of the original fabric was low, and the UPF value of the BN-CQDs fabric only was increased slightly to 19 and the UV transmittance of the two fabrics was greater than 5%. The UPF value of BN-CQDs/ microcapsule fabric was maintained at 34-36, which reached the level for ptoviding better protection, and increased by 192.6%-207.7% compared with the original. After 20 washes, the UPF value of the BN-CQDs fabric was decreased to 14, and the declining rate of the UPF value of the BN-CQDs/ microcapsule fabric also decreased with the increase of the microcapsule content in the modified solution. Because IPDI reacted with the cellulose and the surface OH of the BN-CQDs, it was fixed on the fabric. However, when its content reached 3 mL, the decrease rate of its UPF value did not change much. For example, the UPF value of A6 fabric was still as high as 32, representing a decrease by 11%, and the ultraviolet transmittance of A1-A5 fabrics were less than 5% (Fig. 7 and Fig. 8). For the finished fabric, the moisture permeability was found in the range of 2 712-3 101 g/(m2·d), in comparison to the moisture permeability of 3 154 g/(m2·d) untreated fabric, representing a reduction from 2% to 14%, meeting the moisture permeability requirement (Fig. 9).

Conclusion Isocyanate microcapsules have smooth surface, complete morphology, uniform dispersion and no agglomeration. The original fabric and BN-CQDs are not up to the "requirements of UV protection products", and the addition of BN-CQDs on the surface of the fabric will improve its UV protection performance, at the same time adding isoferone diisocyanate microcapsules not only improve the UV water resistance, but also reduce the UV transmittance, BN-CQDs/ Microcapsule fabric meets the requirements of "UV protection products". BN-CQDs/ microcapsule finishing can reduce the moisture permeability of fabric slightly, but still meet all the requirements of moisture permeability.

Key words: carbon quantum dots, UV protective property, polyurethane, microcapsule, ultraviolet protection factor, washing durability

中图分类号: 

  • TS195.5

表1

整理棉织物编号及涂层组成"

棉织物
编号
微胶囊溶液
体积/mL
氮硼掺杂量子点
溶液体积/mL
A 0 0
A0 0 10
A1 1 10
A2 2 10
A3 3 10
A4 4 10
A5 5 10

图1

IPDI和微胶囊的红外谱图"

图2

微胶囊的视频显微镜图"

图3

微胶囊的粒径分布图"

图4

微胶囊及壁材和纯IPDI的TG图"

图5

采用CQDs和不同比例CQDs/微胶囊整理织物的红外谱图"

图6

不同处理条件下的棉织物在365 nm紫外灯下照射图"

图7

不同处理条件下棉织物的紫外防护性能"

图8

不同处理条件下棉织物的UVA及UVB透过率"

图9

不同处理条件下棉织物的透湿率"

[1] LINDQVIST P G, EPSTEIN E, LANDIN-OLSSON M. Sun exposure-hazards and benefits[J]. Anticancer Research, 2022, 42(4), 1671-1677.
doi: 10.21873/anticanres.15644
[2] DIBOWSKI G, ESSER K. Hazards caused by UV rays of xenon light based high performance solar simulators[J]. Safety and Health at Work, 2017, 8(3): 237-245.
doi: 10.1016/j.shaw.2016.12.002 pmid: 28951799
[3] SU Y, WANG X, ZHAO H, et al. UV resistance of sol-gel hydrophobic silica antireflective coatings[J]. Journal of Sol-Gel Science and Technology, 2023, 106(381-392): 1-12.
doi: 10.1007/s10971-022-05961-3
[4] GUPTA V, JOSE S, KADAM V, et al. Sol gel synthesis and application of silica and titania nano particles for the dyeing and UV protection of cotton fabric with madder[J]. Journal of Natural Fibers, 2022, 19(13): 5566-5576.
doi: 10.1080/15440478.2021.1881688
[5] 王晓菊, 王晓云. 抗紫外线纺织品的研究新进展[J]. 纺织导报, 2017 (6): 74-77.
WANG Xiaoju, WANG Xiaoyun. New progress in the research of uv resistant textiles[J]. China Textile Leader, 2017 (6):74-77.
[6] FELIPE B H S, CABRAL R L B, LADCHUMANANANDASIVAM R, et al. Nanocoating on cotton fabric with nitrogen-doped graphene quantum dots/titanium dioxide/PVA: an erythemal UV protection and photoluminescent finishing[J]. Journal of Materials Research and Technology, 2022, 18: 2435-2450.
doi: 10.1016/j.jmrt.2022.03.078
[7] MOUSA M A, KHAIRY M. Synthesis of nano-zinc oxide with different morphologies and its application on fabrics for UV protection and microbe-resistant defense clothing[J]. Textile Research Journal, 2020, 90(21/22): 2492-2503.
doi: 10.1177/0040517520920952
[8] LIU W, ChENG W, ZHOU M, et al. Construction of multifunctional UV-resistant, antibacterial and photothermal cotton fabric via silver/melanin-like nanoparticles[J]. Cellulose, 2022, 29(13): 7477-7494.
doi: 10.1007/s10570-022-04740-1
[9] ZHAO Die Ling, CHUNG T S. Applications of carbon quantum dots (CQDs) in membrane technologies: a review[J]. Water Research, 2018, 147:43-49.
doi: S0043-1354(18)30755-3 pmid: 30296608
[10] 冯艳. 碳量子点复合整理面料的紫外防护与光催化[D]. 郑州: 中原工学院, 2021: 10-11.
FENG Yan. UV protection and photocatalysis of carbon quantum dot composite fabric[D]. Zhengzhou: Zhongyuan Institute of Technology, 2021:10-11.
[11] HESS S C, PERMATASARI F A, FUKAZAWA H, et al. Direct synthesis of carbon quantum dots in aqueous polymer solution: one-pot reaction and preparation of transparent UV-blocking films[J]. Journal of Materials Chemistry: A, 2017, 5(10): 5187-5194.
doi: 10.1039/C7TA00397H
[12] 成世杰, 王晨洋, 左丹英, 等. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(6): 93-98.
CHENG Shijie, WANG Chenyang, ZUO Danying, et al. Effects of boron-nitrogen doped carbon dots on ultraviolet resistance of cotton fabric[J]. Journal of Textile Research, 2020, 41(6): 93-98.
doi: 10.1177/004051757104100201
[13] ZUO D, LIANG N, XU J, et al. UV protection from cotton fabrics finished with boron and nitrogen co-doped carbon dots[J]. Cellulose, 2019, 26: 4205-4212.
doi: 10.1007/s10570-019-02365-5
[14] 梁丰收, 陈卫星, 马爱洁, 等. 界面聚合法制备异氰酸酯型微胶囊及其性能[J]. 高分子材料科学与工程, 2018, 34(2): 150-154.
LIANG Fengshou, CHEN Weixing, MA Aijie, et al. Preparation and properties of isocyanate microcapsules by interfacial polymerization[J]. Polymer Materials Science and Engineering, 2018, 34(2):150-154.
[15] LI C, TAN J, GU J, et al. Raphid and efficient synthesis of isocyanate microcagsules via thiol-ene photopxolymerization in Pickering emulsion and its application in setf-healing coating[J]. Composite Science and Technology, 2016, 123:250-258.
doi: 10.1016/j.compscitech.2016.01.001
[16] 余飞, 陈中华, 曾幸荣. 正十二醇相变储热微胶囊的制备与表征[J]. 高分子材料科学与工程, 2009, 25(6): 135-138.
YU Fei, CHEN Zhonghua, ZENG Xingrong. Preparation and characterization of n-dodecyl alcohol phase change heat storage microcapsules[J]. Polymer Materials Science and Engineering, 2009, 25(6): 135-138.
[17] HEBEISH A, SHARAF S, FAROUK A. Utilization of chitosan nanoparticles as a green finish in multifunctionalization of cotton textile[J]. International Journal of Biological Macromolecules, 2013, 60(9):10-17.
doi: 10.1016/j.ijbiomac.2013.04.078
[1] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[2] 陈贝, 任李培, 肖杏芳. 铽-金属有机框架改性棉织物的制备及其pH值探测性能[J]. 纺织学报, 2023, 44(12): 123-129.
[3] 郑贤宏, 唐金好, 李长龙, 王炜. 中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽性能[J]. 纺织学报, 2023, 44(11): 142-150.
[4] 王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫. 紫外光/氨气双重响应超疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 160-166.
[5] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[6] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[7] 陈家辉, 梁跃耀, 陈妮, 房宽峻. 棉织物喷墨印花打印方式的调控及其应用[J]. 纺织学报, 2023, 44(07): 159-166.
[8] 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174.
[9] 王伟, 吴嘉欣, 张晓云, 张传杰, 宫兆庆. 制浆用废旧棉织物的脱色性能及其机制[J]. 纺织学报, 2023, 44(07): 175-183.
[10] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[11] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[12] 葛佳慧, 毛志平, 张琳萍, 钟毅, 隋晓锋, 徐红. 基于二维碳化钛材料修饰的功能棉针织物制备及其性能[J]. 纺织学报, 2023, 44(04): 132-138.
[13] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[14] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[15] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!