纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 17-25.doi: 10.13475/j.fzxb.20220704301
WANG Hanchen1,2, WU Jiayin1,2, HUANG Biao1, LU Qilin1,2()
摘要:
针对水凝胶存在力学性能差、受损后性能难以恢复导致使用寿命短,以及有毒交联剂的使用带来生物相容性差的问题,以明胶(Gel)为基质,双醛纳米纤维素(DNCC)为增强相,通过动态亚胺键形成第一重交联网络,并引入单宁(Ta)和四硼酸钠(Borax)形成多重氢键和动态硼酸酯键,基于动态共价键和氢键协同制备了具有三重交联网络的生物相容性纳米纤维素自愈合Gel/DNCC/Borax/Ta水凝胶,并对其结构和性能进行表征。结果表明:Gel/DNCC/Borax/Ta水凝胶具有良好的热稳定性、柔韧性及可注射性,相比于Gel/DNCC水凝胶,其力学性能和胶体黏弹性明显提高,断裂强度从0.138 MPa增加到0.353 MPa,增加了155.7%,储能模量从960 Pa升高到1 550 Pa, 提升了61.4%;室温环境下,无需外界刺激,受损的水凝胶能够在1 h内快速愈合,愈合效率达到98%;经质量分数0.5%的明胶纤维素复合物浸提液处理72 h后,成纤维细胞凋亡率小于5%,表明Gel/DNCC/Borax/Ta水凝胶具有良好的生物相容性。
中图分类号:
[1] | VLIERBERGHE S V, DUBRUEL P, SCHACHT E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review[J]. Biomacromolecules, 2011, 12(5): 1387-1408. |
[2] | CHENG B, YAN Y, QI J, et al. Cooperative assembly of a peptide gelator and silk fibroin afford an injectable hydrogel for tissue engineering[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12474-12484. |
[3] | LI Z, ZHANG S, CHEN Y, et al. Gelatin methacryloyl-based tactile sensors for medical wearables[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202003601. |
[4] | HOARE T R, KOHANE D S. Hydrogels in drug delivery: progress and challenges[J]. Polymer, 2008, 49(8): 1993-2007. |
[5] | LIU S, KANG M, LI K, et al. Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels[J]. Chemical Engineering Journal, 2018, 334: 2222-2230. |
[6] | ZHANG Y, TAO L, LI S, et al. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules[J]. Biomacromolecules, 2011, 12(8): 2894-2901. |
[7] | WEI Z, YANG J H, LIU Z Q, et al. Novel biocompatible polysaccharide-based self-healing hydrogel[J]. Advanced Functional Materials, 2015, 25(9): 1352-1359. |
[8] | LI Q, LIU C, WEN J, et al. The design, mechanism and biomedical application of self-healing hydrogels[J]. Chinese Chemical Letters, 2017, 28(9): 1857-1874. |
[9] | KANG H W, TABATA Y, IKADA Y. Fabrication of porous gelatin scaffolds for tissue engineering[J]. Biomaterials, 1999, 20(14): 1339-1344. |
[10] | ALI E, SULTANA S, HAMID S B A, et al. Gelatin controversies in food, pharmaceuticals, and personal care products: authentication methods, current status, and future challenges[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(9): 1495-1511. |
[11] | LIU D, NIKOO M, BORAN G, et al. Collagen and gelatin[J]. Annual Review of Food Science and Technology, 2015, 6: 527-557. |
[12] | KLEMM D, CRANSTON E D, FISCHER D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: today's state[J]. Materials Today, 2018, 21(7): 720-748. |
[13] | HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews, 2014, 43(5): 1519-1542. |
[14] | YI X, HE J, WANG X, et al. Tunable mechanical, antibacterial, and cytocompatible hydrogels based on a functionalized dual network of metal coordination bonds and covalent crosslinking[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6190-6198. |
[15] | MÜNSTER L, VÍCHA J, KLOFÁČ J, et al. Stability and aging of solubilized dialdehyde cellulose[J]. Cellulose, 2017, 24(7): 2753-2766. |
[16] | LEE H, YOU J, JIN H J, et al. Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: a comparison of nanofiber and nanocrystal[J]. Carbohydrate Polymers, 2020. DOI:10.1016/j.carbpol.2019.115771. |
[17] | LEI J, LI X, WANG S, et al. Facile fabrication of biocompatible gelatin-based self-healing hydrogels[J]. ACS Applied Polymer Materials, 2019, 1(6): 1350-1358. |
[18] | PEÑA C, CABA K D L, ECEIZA A, et al. Enhancing water repellence and mechanical properties of gelatin films by tannin addition[J]. Bioresource Technology, 2010, 101(17): 6836-6842. |
[19] | GOFF K J L, GAILLARD C, HELBERT W, et al. Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers[J]. Carbohydrate Polymers, 2015, 116: 117-123. |
[20] | SHAO C, WANG M, CHANG H, et al. A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6167-6174. |
[21] | FELIX G, REGENASS M, BOLLER T. Sensing of osmotic pressure changes in tomato cells[J]. Plant Physiology, 2000, 124(3): 1169-1180. |
[22] | GUAN S, ZHANG K, CUI L, et al. Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration[J]. Materials Science and Engineering: C, 2021. DOI:10.1016/j.msec.2021.112604. |
[1] | 魏建斐, 马国聪, 张安莹, 吴雨航, 崔晓晴, 王锐. 明胶基碳点的热解法制备及其阻燃与防伪应用[J]. 纺织学报, 2023, 44(12): 106-114. |
[2] | 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48. |
[3] | 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14. |
[4] | 朱小威, 韦天琛, 李亦江, 邢铁玲, 陈国强. 聚苯乙烯/铁-单宁酸配合物微球在棉织物上的结构生色[J]. 纺织学报, 2022, 43(05): 32-37. |
[5] | 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52. |
[6] | 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11): 1-8. |
[7] | 李枫, 杨嘉豪, 赖耿昌, 王建南, 许建梅. 高分子聚合物栓塞微球的研究进展[J]. 纺织学报, 2021, 42(10): 180-189. |
[8] | 杨雯静, 武海良, 马建华, 姚一军, 沈艳琴. 毛纱上浆用丁二酸酐酰化明胶浆料的制备及其性能[J]. 纺织学报, 2021, 42(04): 93-100. |
[9] | 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59. |
[10] | 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47. |
[11] | 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19. |
[12] | 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(01): 56-62. |
[13] | 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18. |
[14] | 王利君 熊杰 骆菁菁 赵兴艳 赵新飞. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(05): 8-13. |
[15] | 何肖 马明波 鲁庚 胡志华 周文龙. 薯莨水溶提取组分的初步分析[J]. 纺织学报, 2015, 36(05): 63-68. |
|