纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 1-9.doi: 10.13475/j.fzxb.20220705301

• 纤维材料 •    下一篇

基于Polyflow模拟的茂金属聚乙烯纺黏长丝制备及其性能

刘亚1(), 赵晨1, 庄旭品1, 赵义侠1, 程博闻2   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津科技大学, 天津 300457
  • 收稿日期:2022-12-15 修回日期:2023-09-16 出版日期:2023-12-15 发布日期:2024-01-22
  • 作者简介:刘亚(1974—),女,副教授,博士。主要研究方向为功能非织造材料。E-mail:liuya8353@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFB0309303)

Fabrication and properties of metallocene polyethylene spunbond filament based on Polyflow simulation

LIU Ya1(), ZHAO Chen1, ZHUANG Xupin1, ZHAO Yixia1, CHENG Bowen2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin University of Science & Technology, Tianjin 300457, China
  • Received:2022-12-15 Revised:2023-09-16 Published:2023-12-15 Online:2024-01-22

摘要:

为研究茂金属聚乙烯(mPE)用于纺黏生产的可能性,分析了mPE的热性能及流变性能,利用Polyflow模拟软件对mPE纺黏长丝制备过程中熔体的流速分布和挤出状态进行模拟,分析了熔体在相同挤出压力、不同挤出温度下流动过程中的速度分布变化以及挤出胀大的变化趋势,根据模拟结果对纺丝实验进行参数指导,并对得到的纺黏长丝进行测试分析。结果表明:mPE熔体的挤出速度随挤出温度的增高而增大,孔口胀大比随着挤出温度的增高而减小;当挤出温度为240 ℃时成功制备出mPE长丝,经6倍拉伸后mPE长丝的断裂强度达到 3.44 cN/dtex, 力学性能优良;实验结果与模拟结果相吻合,证明了mPE用于纺黏生产的可行性,为mPE材料应用于纺黏生产提供理论参考。

关键词: 茂金属聚乙烯, 流变性能, Polyflow模拟, 纺黏长丝, 可纺性

Abstract:

Objective Spunbond products are widely used in the fields of sanitary materials, packaging, and agriculture. Currently, spunbond products on the market are mainly made from polypropylene (PP) and polyester (PET). Although these materials have high strength, their softness is not good enough to meet the requirements of high softness applications. The metallocene polyethylene (mPE) is used to form membrane for its excellent softness. Because of its poor spinnability, mPE is rarely used in spunbond technology. As such, it is important to study the spinning properties of mPE to modify the performance of traditional spunbond products.
Method The thermal and rheological properties of mPE were analyzed first. According to data available, the flow velocity distribution and extrusion state of mPE melt were simulated by Polyflow numerical simulation method during the preparation of mPE spunbond filament. The velocity distribution and extrusion expansion trend of mPE melt were analyzed under different extrusion temperature. According to the simulation results, the parameters of spinning experiment were guided, and the spunbond filaments of mPE with different mechanical drafting multiples were achieved. In order to characterize the mechanical properties of mPE fiber, numbers of common fibers were used for comparison.
Results The thermos-gravimetric analysis result showed that the thermal decomposition temperature of mPE was 405 ℃ (Fig. 1 (a)), and the differential scanning calorimetry result showed the melting range of mPE was 93.9-130.1 ℃ (Fig. 1(b)). According to the thermal properties, the simulation temperature of rheological test was preliminarily set in the range of 220-280 ℃. The melt flow velocity of mPE increased with the increase of melting temperature (Fig. 5) but decreased rapidly after extruding from the spinneret orifice (Fig. 6) in the simulation experiments. The extrusion swell phenomenon of mPE was quite evident after melt extrusion, the lower the extrusion temperature was, the higher the die swell ratio was, and the maximum was 1.52 at the temperature of 230 ℃. The results of Polyflow simulation were used to guide and optimize the parameters of the spunbond process. Finally, the mPE spunbond filaments with different mechanical drafting multiples were successfully prepared at the spinning temperature of 240 ℃. The performance of series mPE filaments were characterized. The results showed that the diameter of mPE filament decreased with the increase of drafting multiple, and the minimum diameter of mPE filament was 64.2 μm with the drafting multiple of 6 times, the variation reached 61.5% compared with the drafting multiple of 1 time (Fig. 8). Because of the rapid cooling of the trickle flow, the amorphous part disentangled and carried out preferred orientation along with mechanical drafting, more molecular chains in the polymer participated in crystallization, the crystallinity of mPE filament increased with the increase of drawing multiple (Fig. 9). The maximum of the crystallinity was 50.1% with the drafting multiple of 6 times. As the trickle flow further oriented and crystallized with the increase of the drafting multiple, the breaking strength of mPE filament increased and the fracture elongation decreased with the increase of the drawing multiple (Fig. 10). Compared with the common fibers appeared on the market, the mPE filament drawn to 6 times exhibited the best mechanical performance, the breaking strength was 3.44 cN/dtex, and the fracture elongation was 85.69%.
Conclusion Polyflow simulation is used to simulate the flow velocity distribution and extrusion state of the mPE melt in the spunbond process. It proves that the Polyflow simulation results can be used to guide and optimize the process parameters for mPE spinning experiment. The performance test of mPE spunbond filament proves the reliability of the simulation method and the feasibility of mPE application in spunbond technology. The testing results also reveal that mPE filament has excellent mechanical properties, which can be used to form the bi-component spunbond with PP, PET and other raw materials, so as to modify the performance of traditional mono-component spunbond material with softer feeling, which can meet the requirements of high softness for certain applications.

Key words: metallocene polyethylene, rheological property, Polyflow simulation, spinning filament, spinnability

中图分类号: 

  • TS172

图1

mPE原料的热性能曲线"

图2

mPE原料的流变曲线"

图3

熔体流动模型"

图4

熔体流动通道网格和边界划分模型"

表1

mPE熔体模拟参数设置"

温度/℃ 黏度η/(Pa·s) 入口流量Q/(m3·s-1)
230 256 7.348×10-12
250 142 1.356×10-11
270 125 1.533×10-11

图5

不同温度下mPE熔体的流速模拟图"

图6

mPE熔体在轴向和径向的速度变化"

表2

螺杆挤出机各区温度设置"

组别 冷区 1区 2区 3区 4区 5区 机头
A 60 170 190 210 215 220 220
B 60 170 190 210 220 230 230
C 60 180 200 220 230 235 240
D 60 180 220 240 245 250 250
E 60 180 220 240 250 260 260

图7

纺丝流程示意图"

图8

mPE长丝超景深照片及直径变化趋势"

图9

不同牵伸倍数下mPE长丝的XRD图谱"

图10

不同牵伸倍数下mPE纺黏长丝的力学性能"

表3

力学性能对比"

材料 断裂强度/(cN·dtex-1) 断裂伸长率/%
mPE 3.44 85.69
PE 2.20 31.34
PET 3.17 17.00
蚕丝 3.45 19.82
PP 3.33 58.22
壳聚糖 2.03 8.67
PPS 1.68 28.71
粘胶 1.77 16.07
PBT 2.22 76.03
PTT 2.80 67.32
PLA 3.30 26.79
[1] BONG Y Y, BEHNAM P. Aerosol filtration properties of PA6/PE islands-in-the-sea bicomponent spunbond web fibrillated by high-pressure water jets[J]. Journal of Materials Science, 2011, 46(17): 5761-5767.
[2] TOSHITAKA K, YOUHEI K, TOMOAKI T. Theoretical analysis of the spunbond process and its applications for polypropylenes[J]. Advances in Polymer Technology, 2018, 37(6): 2085-2094.
[3] 于金超, 姬洪, 陈康, 等. 聚醚酯/聚对苯二甲酸丁二醇酯并列复合纤维的制备及其性能[J]. 纺织学报, 2021, 42(4): 42-47.
YU Jinchao, JI Hong, CHEN Kang, et al. Preparation and properties of poly(ether ester)/poly(butylene terephthalate) composite fibers[J]. Journal of Textile Research, 2021, 42(4): 42-47.
[4] 宋倩倩, 黄格省, 周笑洋, 等. 茂金属聚乙烯市场现状与技术进展[J]. 石化技术与应用, 2021, 39(3): 153-158.
SONG Qianqian, HUANG Gesheng, ZHOU Xiaoyang, et al. Market status and technical progress of metallocene polyethylene[J]. Petrochemical Technology & Application, 2021, 39(3): 153-158.
[5] 中国石油和化学工业联合会化工新材料专委会. 中国化工新材料产业发展报告[M]. 北京: 中国石化出版社, 2018: 263-265.
Special Committee of New Chemical Materials of China Petroleum and Chemical Industry Federation. China chemical new materials industry development report(2018)[M]. Beijing: China Petrochemical Press, 2018: 263-265.
[6] ANTONOV A A, BRYLIAKOV K. Post-metallocene catalysts for the synthesis of ultrahigh molecular weight polyethylene: recent advances[J]. European Polymer Journal, 2021. DOI:10.1016/j.eurpolymj.2020.110162.
[7] STIEGER S, MITSOULIS E, WALLUCH M, et al. On the influence of viscoelastic modeling in fluid flow simulations of gum acrylonitrile butadiene rubber[J]. Polymers, 2021.DOI:10.3390/polym13142323.
[8] LV X, HAO X, OU R, et al. Rheological properties of wood-plastic composites by 3D numerical simulations: different components[J]. Forests, 2021, 12(4): 417-423.
[9] SHARMA S, GOSWAMI M, DEB A, et al. Structural deformation/instability of the co-extrudate rubber profiles due to die swell: experimental and CFD studies with 3D models[J]. Chemical Engineering Journal, 2021. DOI:10.1016/J.CEJ.2021.130504.
[10] EDELEVA M, TANG D, VAN W T, et al. Testing the PTT rheological model for extrusion of virgin and composite materials in view of enhanced conductivity and mechanical recycling potential[J]. Processes, 2021. DOI: 10.3390/pr9111969.
[11] 廖壑, 王建宁, 张东剑, 等. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(1): 30-34.
LIAO He, WANG Jianning, ZHANG Dongjian, et al. Numerical simulation of interface distribution of flowing components in parallel composite spinning channels[J]. Journal of Textile Research, 2021, 42(1): 30-34.
[12] 杨崇倡, 王佳林, 冯培, 等. 环形微孔中钢针缩进量对中空纤维中空度和挤出胀大的影响[J]. 产业用纺织品, 2021, 39(6): 34-40, 57.
YANG Chongchang, WANG Jialin, FENG Pei, et al. Effect of needle shrinkage on hollowness and extrusion swell of hollow fiber in annular microhole[J]. Technical Textiles, 2021, 39(6): 34-40, 57.
[13] 陈康, 陈高峰, 王群, 等. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15,23.
CHEN Kang, CHEN Gaofeng, WANG Qun, et al. Effect of heat treatment tension change on structure and properties of high die and low shrinkage polyester industrial wire in post-processing[J]. Journal of Textile Research, 2022, 43(10): 10-15, 23.
[14] RHEE S, WHITE J L. Orientation and mechanical properties of extrusion cast PA12 films in biaxial stretching process[J]. International Polymer Processing, 2022, 16(4): 388-397.
[15] HE W, KONG C, CAI Y, et al. Thermal stability enhancement of oriented polyethylene by formation of epitaxial shish-kebab crystalline structure[J]. Polymer Degradation and Stability, 2022. DOI:10.1016/j.polymdegradstab.2021.109771.
[16] 金旺, 李建华. 喷丝头拉伸对聚甲醛纤维结构与性能的影响[J]. 合成纤维工业, 2017, 40(4): 15-18.
JIN Wang, LI Jianhua. Effect of spinneret stretching on structure and properties of polyformaldehyde fiber[J]. China Synthetic Fiber Industry, 2017, 40(4): 15-18.
[17] RAHMAN M M, NETRAVALI A N. Advanced Green composites using liquid crystalline cellulose fibers and waxy maize starch based resin[J]. Composites Science and Technology, 2018, 162: 110-116.
[18] LIU Q S, SUN Y Y, XIA S N, et al. Structure and mechanical property of polylactide fibers manufactured by air drawing[J]. Textile Research Journal, 2016, 86(9): 948-959.
[19] 陈国康, 林耀, 袁孟红. PE及其共聚物与PP的复合纺丝研究[J]. 合成纤维工业, 1996, 19(6): 6-10.
CHEN Guokang, LIN Yao, YUAN Menghong. Study on composite spinning of PE and its copolymer with PP[J]. China Synthetic Fiber Industry, 1996, 19(6): 6-10.
[20] 朱娅楠, 潘志娟, 汪吉艮. PLA长丝的基本结构与物理性能[J]. 现代丝绸科学与技术, 2015, 30(6): 201-203.
ZHU Yannan, PAN Zhijuan, WANG Jigen. Basic structure and physical properties of PLA filament[J]. Modern Silk Science and Technology, 2015, 30(6): 201-203.
[21] 邓安国, 高占岭, 郭薇薇. 聚丙烯超细FDY长丝的制备及性能研究[J]. 合成纤维工业, 2021, 44(6): 25-29.
DENG Anguo, GAO Zhanling, GUO Weiwei. Preparation and properties of polypropylene ultrafine FDY filament[J]. China Synthetic Fiber Industry, 2021, 44(6): 25-29.
[22] 孙晓婷. 壳聚糖连续长丝制备关键技术研究[D]. 青岛: 青岛大学, 2016: 47-48.
SUN Xiaoting. Study on key technology of chitosan continuous filament preparation[D]. Qingdao: Qingdao University, 2016:47-48.
[23] 盛向前, 张蕊萍, 牛梅. 耐热聚苯硫醚纤维性能的研究[J]. 产业用纺织品, 2011, 29(2): 23-26, 40.
SHENG Xiangqian, ZHANG Ruiping, NIU Mei. Research on properties of heat resistant polyphenylene sulfide fiber[J]. Technical Textiles, 2011, 29(2): 23-26, 40.
[24] 陈西安, 谢跃亭, 纪琼特. 石墨烯改性黏胶长丝的制备及性能研究[J]. 针织工业, 2020(10): 16-19.
CHEN Xi'an, XIE Yueting, JI Qiongte. Preparation and properties of graphene-modified viscose filament[J]. Knitting Industries, 2020(10): 16-19.
[25] 王保柱. 高速纺PBT-POY黑色长丝生产工艺探讨及成型不良原因分析[J]. 纺织报告, 2018, 11: 14-17.
WANG Baozhu. Study on production technology of high speed spinning PBT-POY black filament and analysis of forming defects[J]. Textile Reports, 2018, 11: 14-17.
[26] 顾栋华, 辛婷芬. PTT形状记忆长丝纤维的生产[J]. 纺织服装周刊, 2008(35): 32.
GU Donghua, XIN Tingfen. Production of PTT shape memory filament fiber[J]. Textile Apparel Weekly, 2008(35): 32.
[1] 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40.
[2] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
[3] 胡宝继, 张巧玲, 王旭. 聚乙二醇改性热塑性环氧树脂及其可纺性[J]. 纺织学报, 2023, 44(02): 63-68.
[4] 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62.
[5] 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10.
[6] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[7] 张倩玉, 秦志刚, 阎若思, 贾立霞. 剪切增稠液/纤维复合材料防弹性能的研究进展[J]. 纺织学报, 2021, 42(06): 180-188.
[8] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[9] 王迎, 王怡婷, 吴佳庆, 郭亚飞, 郝新敏. 生物基锦纶56用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(01): 84-89.
[10] 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8.
[11] 宋乐, 沈兰萍, 黄显雯, 衡芳芳, 马洪波, 欧阳琴, 陈鹏, 王瑄. 木质素/聚丙烯腈复合纤维的制备及其性能[J]. 纺织学报, 2020, 41(02): 7-12.
[12] 潘伟楠, 相恒学, 翟功勋, 倪明达, 沈家广, 朱美芳. 共聚酰胺6/66相对分子质量对其结晶和流变性能的影响[J]. 纺织学报, 2019, 40(09): 8-14.
[13] 魏海江, 江力, 张顺花. 耐高温相变蜡/聚丙烯共混物的制备及其性能[J]. 纺织学报, 2019, 40(06): 8-13.
[14] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[15] 黄廷健 牟浩 阳知乾 任红檠 徐建军 刘鹏清. 高强高模聚甲醛纤维的制备及其性能[J]. 纺织学报, 2018, 39(10): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!