纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 30-37.doi: 10.13475/j.fzxb.20220705708
陈佳慧1,2, 梅涛1, 赵青华1, 尤海宁1, 王雯雯1, 王栋1()
CHEN Jiahui1,2, MEI Tao1, ZHAO Qinghua1, YOU Haining1, WANG Wenwen1, WANG Dong1()
摘要:
针对当前空调制冷与供暖中造成的能源消耗激增与实现“双碳”的全球目标之间出现巨大矛盾,实现由智能织物对人体自身热湿舒适性调节从而降低能耗成为亟需解决的问题。根据当前热湿舒适性智能织物的研究,概述了人体热湿舒适性调节原理;介绍了由高性能材料(如高红外线反射、高导热、高红外线透过材料)制备的热湿舒适性智能织物以及通过纤维或织物结构控制实现的智能织物(如保暖、吸湿快干、智能热湿调节织物)。分析了不同调节方式的智能织物制备方法及现阶段面临的困难和挑战;提出可制备新型热湿刺激响应纤维,通过纤维的低成本、大规模生产达到智能热湿调节织物的生产及广泛应用;展望了热湿舒适性智能织物在“双碳”背景下,推动智能服装发展的应用前景。
中图分类号:
[1] |
ETAIN A Tansey, CHRISTOPHER D Johnson. Recent advances in thermoregulation[J]. Advances in Physiology Education, 2015, 39(3): 139-148.
doi: 10.1152/advan.00126.2014 pmid: 26330029 |
[2] |
VRIENS Joris, NILIUS Bernd, VOETS Thomas. Peripheral thermosensation in mammals[J]. Nature Reviews Neuroscience, 2014, 15(9): 573-589.
doi: 10.1038/nrn3784 pmid: 25053448 |
[3] | BEKER Braian Morris, CERVELLERA Camila, VITO Antonella De, et al. Human physiology in extreme heat and cold[J]. International Archives of Clinical Physiology, 2018, 1(1): 1-8. |
[4] |
FANG Yunsheng, CHEN Guorui, BICK Michael, et al. Smart textiles for personalized thermoregulation[J]. Chemical Society Reviews, 2021, 50(17): 9357-9374.
doi: 10.1039/d1cs00003a pmid: 34296235 |
[5] |
ÜRGE-VORSATZ Diana, CABEZA Luisa F, SERRANO Susana, et al. Heating and cooling energy trends and drivers in buildings[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 85-98.
doi: 10.1016/j.rser.2014.08.039 |
[6] | PAKDEL Esfandiar, NAEBE Maryam, SUN Lu, et al. Advanced functional fibrous materials for enhanced thermoregulating performance[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13039-13057. |
[7] |
COZZA E S, ALLOISIO M, COMITE A, et al. NIR-reflecting properties of new paints for energy-efficient buildings[J]. Solar Energy, 2015, 116: 108-116.
doi: 10.1016/j.solener.2015.04.004 |
[8] |
BROWN Douglas J A, BRUGGER Hermann, BOYD Jeff, et al. Accidental hypothermia[J]. New England Journal of Medicine, 2012, 367(20): 1930-1938.
doi: 10.1056/NEJMra1114208 |
[9] | 王亚静. 湿环境对织物热湿传递及服装热湿舒适性能的影响[D]. 苏州: 苏州大学, 2019: 1-2. |
WANG Yajing. Effect of wet environment on heat and moisture performance of fabric and garment[D]. Suzhou: Soochow University, 2019: 1-2. | |
[10] | JOCIC Dragan. Active coatings for smart textiles[M]. Amsterdam: Elsevier, 2016: 331-354. |
[11] |
PENG Yucan, CHEN Jun, SONG Alex Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112.
doi: 10.1038/s41893-018-0023-2 |
[12] |
CAI Lili, SONG Alex Y, LI Wei, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30(35): 1802152.
doi: 10.1002/adma.201802152 |
[13] |
GAO Tingting, YANG Zhi, CHEN Chaoji, et al. Three-dimensional printed thermal regulation textiles[J]. ACS Nano, 2017, 11(11): 11513-11520.
doi: 10.1021/acsnano.7b06295 pmid: 29072903 |
[14] |
ZENG Shaoning, PIAN Sijie, SU Minyu, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
doi: 10.1126/science.abi5484 pmid: 34353954 |
[15] |
HARRIS J Arthur, FRANCIS G Benedict. A biometric study of human basal metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 1918, 4(12): 370-373.
doi: 10.1073/pnas.4.12.370 pmid: 16576330 |
[16] | WISSLER E H. Mathematical simulation of human thermal behavior using whole body models[J]. Heat Transfer in Medicine and Biology, 1985, 1(13): 325-373. |
[17] |
MA Zhihao, ZHAO Dongliang, SHE Chenglong, et al. Personal thermal management techniques for thermal comfort and building energy saving[J]. Materials Today Physics, 2021, 20(7): 100465-100486.
doi: 10.1016/j.mtphys.2021.100465 |
[18] | SARAH A Nunneley. Heat stress in protective clothing: interactions among physical and physiological factors[J]. Scandinavian Journal of Work, Environment & Health, 1989, 15: 52-57. |
[19] |
HSU Po-chun, SONG Alex Y, CATRYSSE Peter B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
pmid: 27701110 |
[20] |
CAI Lili, SONG Alex Y, WU Peilin, et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communication, 2017, 8(1): 1-8.
doi: 10.1038/s41467-016-0009-6 |
[21] |
CUI Ying, GONG Huaxin, WANG Yujie, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201706807.
doi: 10.1002/adma.201706807 |
[22] |
LIU Zengwei, LYU Jing, FANG Dan, et al. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano, 2019, 13(5): 5703-5711.
doi: 10.1021/acsnano.9b01094 pmid: 31042355 |
[23] |
ZHANG Xu A, YU Shangjie, XU Beibei, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427): 619-623.
doi: 10.1126/science.aau1217 pmid: 30733415 |
[24] |
WANG Yuanfeng, LIANG Xin, ZHU He, et al. Reversible water transportation diode: temperature-adaptive smart janus textile for moisture/thermal management[J]. Advanced Functional Materials, 2020, 30(6): 1907851-1907859.
doi: 10.1002/adfm.201907851 |
[25] |
WONG Angela, DAOUD Walid A, LIANG Hanhua, et al. Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric[J]. Solar Energy Materials and Solar Cells, 2015, 134: 425-437.
doi: 10.1016/j.solmat.2014.12.011 |
[26] |
PANWAR Kamlesh, JASSAL Manjeet, AGRAWAL Ashwini K. TiO2-SiO2 Janus particles treated cotton fabric for thermal regulation[J]. Surface and Coatings Technology, 2017, 309: 897-903.
doi: 10.1016/j.surfcoat.2016.10.066 |
[27] |
SIMA Kashi, GUPTA Rahul K, BAUM Thomas, et al. Phase transition and anomalous rheological behaviour of polylactide/graphene nanocomposites[J]. Composites Part B: Engineering, 2018, 135: 25-34.
doi: 10.1016/j.compositesb.2017.10.002 |
[28] |
ABBAS Amir, ZHAO Yan, WANG Xungai, et al. Cooling effect of MWCNT-containing composite coatings on cotton fabrics[J]. Journal of The Textile Institute, 2013, 104(8): 798-807.
doi: 10.1080/00405000.2012.757007 |
[29] | YE Changqing, LI Mingzhu, HU Junping, et al. Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective ″cool roof″[J]. Energy & Environmental Science, 2011, 4(9): 3364-3367. |
[30] |
SHI Normannan, TSAI Chengchia, CAMINO Fernando, et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants[J]. Science, 2015, 349(6245): 298-301.
doi: 10.1126/science.aab3564 pmid: 26089358 |
[31] |
PETHAIYAN Jeevanandam, MULUKUTLA R S, Phillips M, et al. Near infrared reflectance properties of metal oxide nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(5): 1912-1918.
doi: 10.1021/jp066363o |
[32] |
THONGKANLUANG Thadsanee, LIMSUWAN Pichet, RAKKWAMSUK Pattana. Preparation and application of high near-infrared reflective green pigment for ceramic tile roofs[J]. International Journal of Applied Ceramic Technology, 2011, 8(6): 1451-1458.
doi: 10.1111/j.1744-7402.2010.02599.x |
[33] | MAHLTIG Boris, ZHANG Jieyang, WU Linfei, et al. Effect pigments for textile coating: a review of the broad range of advantageous functionalization[J]. Journal of Coatings Technology & Research, 2017, 14(1): 35-55. |
[34] | CUI Yuxing. Study and development of near-infrared reflective and absorptive materials for energy saving application[D]. Canada: Carleton University, 2012: 11-14. |
[35] | WONG Ho Yan Angela. Near-infrared reflective materials for textiles[D]. Hong Kong: The Hong Kong Polytechnic University, 2015: 3-24. |
[36] | ÖNDER KARAO'LU Emel, SARIER Nihal. Functional finishes for textiles: improving comfort, performance and protection[M]. Amsterdam: Elsevier, 2015: 17-98. |
[37] | MENACHEM Lewin. Handbook of fiber chemistry[M]. 3rd ed. Boca Raton: CRC Press, 2006: 1056. |
[38] |
YANG Ankun, CAI Lili, ZHANG Rufan, et al. Thermal management in nanofiber-based face mask[J]. Nano Letters, 2017, 17(6): 3506-3510.
doi: 10.1021/acs.nanolett.7b00579 pmid: 28505460 |
[39] |
TONG Jonathan K, HUANG Xiaopeng, BORISKINA Svetlana V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6): 769-778.
doi: 10.1021/acsphotonics.5b00140 |
[40] |
FAN Wei, ZHANG Ge, ZHANG Xiaolin, et al. Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management[J]. Small, 2022, 18(10): 2107150.
doi: 10.1002/smll.202107150 |
[41] | IQBAL Mohammad Irfan, SUN Fengxin, FEI Bin, et al. Knit architecture for water-actuating woolen knitwear and its personalized thermal management[J]. ACS Applied Materials & Interfaces, 2021, 13(5): 6298-6308. |
[1] | 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150. |
[2] | 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58. |
[3] | 王莉, 张冰洁, 王建萍, 刘莉, 杨雅岚, 姚晓凤, 李倩文, 卢悠. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(05): 66-72. |
[4] | 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101. |
[5] | 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127. |
[6] | 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94. |
[7] | 雷敏, 李毓陵, 马颜雪, 程隆棣, 周峰. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(07): 174-181. |
[8] | 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123. |
[9] | 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138. |
[10] | 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104. |
[11] | 王诗潭 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10): 153-159. |
[12] | 张璐璐 丁放 胡雪燕 王鸿博 杜金梅. 疏水图形及面积对棉织物吸湿快干性能的影响[J]. 纺织学报, 2017, 38(09): 89-93. |
[13] | 李利君 宋国文 李睿 王丽文 向春晖. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017, 38(03): 122-125. |
[14] | 马崇启 蔡薇琦 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12): 29-32. |
[15] | 张纪婷 蒋高明. 保暖涤纶割圈绒织物的热湿舒适性[J]. 纺织学报, 2015, 36(04): 55-59. |
|