纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 30-37.doi: 10.13475/j.fzxb.20220705708

• 特约专栏:纺织科技前沿 • 上一篇    下一篇

热湿舒适性智能织物的研究进展

陈佳慧1,2, 梅涛1, 赵青华1, 尤海宁1, 王雯雯1, 王栋1()   

  1. 1.武汉纺织大学 纺织纤维及制品教育部重点实验室, 湖北 武汉 430200
    2.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
  • 收稿日期:2022-07-18 修回日期:2022-10-08 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 王栋(1979—),男,教授,博士。主要研究方向为纤维新材料及其与生物、电子、能源、环境等交叉学科领域的创新研究。E-mail:wangdon08@126.com
  • 作者简介:陈佳慧(1991—),女,博士。主要研究方向为纤维基智能驱动材料。
  • 基金资助:
    国家自然科学基金项目(51873166);国家自然科学基金项目(51873165)

Research progress in smart fabrics for thermal and humidity management

CHEN Jiahui1,2, MEI Tao1, ZHAO Qinghua1, YOU Haining1, WANG Wenwen1, WANG Dong1()   

  1. 1. Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2022-07-18 Revised:2022-10-08 Published:2023-01-15 Online:2023-02-16

摘要:

针对当前空调制冷与供暖中造成的能源消耗激增与实现“双碳”的全球目标之间出现巨大矛盾,实现由智能织物对人体自身热湿舒适性调节从而降低能耗成为亟需解决的问题。根据当前热湿舒适性智能织物的研究,概述了人体热湿舒适性调节原理;介绍了由高性能材料(如高红外线反射、高导热、高红外线透过材料)制备的热湿舒适性智能织物以及通过纤维或织物结构控制实现的智能织物(如保暖、吸湿快干、智能热湿调节织物)。分析了不同调节方式的智能织物制备方法及现阶段面临的困难和挑战;提出可制备新型热湿刺激响应纤维,通过纤维的低成本、大规模生产达到智能热湿调节织物的生产及广泛应用;展望了热湿舒适性智能织物在“双碳”背景下,推动智能服装发展的应用前景。

关键词: 智能织物, 热湿舒适性, 红外线反射材料, 导热材料, 红外线透过材料, 吸湿快干

Abstract:

Significance With rapid development of today's social population and the increasing scarcity of fossil energy, a huge contradiction arose between the surge in energy consumption, e.g., from air conditioning, and the global goals of "carbon peaking" and "carbon neutrality". The large amount of greenhouse gas emissions caused by air-conditioning, refrigeration and heating have also become an urgent problem to be solved. Therefore, it is necessary to seek a new method for effectively adjusting the thermal and moist comfort of the human body so as to reduce the energy consumption caused by air conditioning. Textiles can also play a role in managing human comfort in daily life, but would mainly rely on the thickness of clothing to regulate human body temperature. In order to better meet the modern day requirements for life comfort, the active adjustment of smart textiles has demonstrated the potential for adjusting the human body's thermal and moist comfort, thereby reducing the energy consumption in the process of cooling and heating by air conditioning. Under the premise of the "double carbon" goal, this has could be a promising solution.
Progress This review summarizes the research progress in adjusting the thermal and moist comfort of the human body by using smart fabrics. The principle of regulating the thermal and moist condition of the human body through the fabric is introduced. In addition, the researches and mechanisms of the current study on regulating the thermal and moist comfort of the human body by means of fabric materials or fabric structures have been summarized. Coating or combining high-performance materials was adopted to prepare thermal and moist comfort fabrics aiming to regulating human body temperature. High infrared reflection materials such as silver and titanium dioxide, high thermal conductivity materials such as boron nitride nanosheets (BNNSs), and high infrared transmission materials such as polyethylene (PE) are proposed. All of these high-performance materials can be used for raising or decreasing the body temperature. The review also introduces the thermal and moist comfort adjustment of smart fabrics caused by different fibers and fabric structures, such as thermal fabrics made of porous fibers, moisture-absorbing and quick-drying fabrics caused by asymmetric structures, and intelligent adjustment fabric that can respond to changes in fabric pore size caused by external temperature and humidity. Finally, this review paper analyzed and discussed the current difficulties and challenges in smart fabrics with different fabrication methods.
Conclusion and Prospect The smart fabric that can manage thermal and humid conditions of human body is necessary and the key is energy shortage. However, the performances of the thermal management, humidity management or thermal and humidity management of the recent smart fabric are directly affected and limited by the materials. Few high-performance functional materials can be utilized to fabricate smart fabrics. In addition, the main technical means of preparing thermal and moist comfort smart fabrics are coatings and material composites. However, the stability of coatings, the compatibility of composite materials, and the difficulty of industrial production limit the development of thermal and moist comfort smart fabrics. Therefore, it is necessary to prepare new fibers that can respond to external heat and humidity stimuli, so as to realize the preparation of fabrics that can intelligently regulate human body temperature and humidity. Additionally, the ease of construction, preparation, and large-scale production of fibers can reduce the cost of smart fabric production. Finally, the current preparation methods and functional principles of intelligent thermal-moist comfort fabrics are summarized, and a low-cost and large-scale preparation method for intelligent thermal-moist comfort fabrics is proposed by technological innovation of fibers.

Key words: smart fabric, thermal and moist comfort, infrared radiation material, heat conduction material, infrared transmission material, moisture absorption and quick drying

中图分类号: 

  • TS1

图1

人体、织物与环境之间的传热方式示意图"

图2

氮化硼/聚乙烯醇复合纤维作为制冷织物的结构与散热示意图"

图3

PE/PA6复合织物的制备及应用"

图4

仿生多孔纤维的微观形貌图及保暖织物的应用"

图5

三维结构吸湿快干织物结构示意图"

图6

羊毛织物随外界湿度变化时织物孔隙结构的变化"

[1] ETAIN A Tansey, CHRISTOPHER D Johnson. Recent advances in thermoregulation[J]. Advances in Physiology Education, 2015, 39(3): 139-148.
doi: 10.1152/advan.00126.2014 pmid: 26330029
[2] VRIENS Joris, NILIUS Bernd, VOETS Thomas. Peripheral thermosensation in mammals[J]. Nature Reviews Neuroscience, 2014, 15(9): 573-589.
doi: 10.1038/nrn3784 pmid: 25053448
[3] BEKER Braian Morris, CERVELLERA Camila, VITO Antonella De, et al. Human physiology in extreme heat and cold[J]. International Archives of Clinical Physiology, 2018, 1(1): 1-8.
[4] FANG Yunsheng, CHEN Guorui, BICK Michael, et al. Smart textiles for personalized thermoregulation[J]. Chemical Society Reviews, 2021, 50(17): 9357-9374.
doi: 10.1039/d1cs00003a pmid: 34296235
[5] ÜRGE-VORSATZ Diana, CABEZA Luisa F, SERRANO Susana, et al. Heating and cooling energy trends and drivers in buildings[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 85-98.
doi: 10.1016/j.rser.2014.08.039
[6] PAKDEL Esfandiar, NAEBE Maryam, SUN Lu, et al. Advanced functional fibrous materials for enhanced thermoregulating performance[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13039-13057.
[7] COZZA E S, ALLOISIO M, COMITE A, et al. NIR-reflecting properties of new paints for energy-efficient buildings[J]. Solar Energy, 2015, 116: 108-116.
doi: 10.1016/j.solener.2015.04.004
[8] BROWN Douglas J A, BRUGGER Hermann, BOYD Jeff, et al. Accidental hypothermia[J]. New England Journal of Medicine, 2012, 367(20): 1930-1938.
doi: 10.1056/NEJMra1114208
[9] 王亚静. 湿环境对织物热湿传递及服装热湿舒适性能的影响[D]. 苏州: 苏州大学, 2019: 1-2.
WANG Yajing. Effect of wet environment on heat and moisture performance of fabric and garment[D]. Suzhou: Soochow University, 2019: 1-2.
[10] JOCIC Dragan. Active coatings for smart textiles[M]. Amsterdam: Elsevier, 2016: 331-354.
[11] PENG Yucan, CHEN Jun, SONG Alex Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112.
doi: 10.1038/s41893-018-0023-2
[12] CAI Lili, SONG Alex Y, LI Wei, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30(35): 1802152.
doi: 10.1002/adma.201802152
[13] GAO Tingting, YANG Zhi, CHEN Chaoji, et al. Three-dimensional printed thermal regulation textiles[J]. ACS Nano, 2017, 11(11): 11513-11520.
doi: 10.1021/acsnano.7b06295 pmid: 29072903
[14] ZENG Shaoning, PIAN Sijie, SU Minyu, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
doi: 10.1126/science.abi5484 pmid: 34353954
[15] HARRIS J Arthur, FRANCIS G Benedict. A biometric study of human basal metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 1918, 4(12): 370-373.
doi: 10.1073/pnas.4.12.370 pmid: 16576330
[16] WISSLER E H. Mathematical simulation of human thermal behavior using whole body models[J]. Heat Transfer in Medicine and Biology, 1985, 1(13): 325-373.
[17] MA Zhihao, ZHAO Dongliang, SHE Chenglong, et al. Personal thermal management techniques for thermal comfort and building energy saving[J]. Materials Today Physics, 2021, 20(7): 100465-100486.
doi: 10.1016/j.mtphys.2021.100465
[18] SARAH A Nunneley. Heat stress in protective clothing: interactions among physical and physiological factors[J]. Scandinavian Journal of Work, Environment & Health, 1989, 15: 52-57.
[19] HSU Po-chun, SONG Alex Y, CATRYSSE Peter B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
pmid: 27701110
[20] CAI Lili, SONG Alex Y, WU Peilin, et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communication, 2017, 8(1): 1-8.
doi: 10.1038/s41467-016-0009-6
[21] CUI Ying, GONG Huaxin, WANG Yujie, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201706807.
doi: 10.1002/adma.201706807
[22] LIU Zengwei, LYU Jing, FANG Dan, et al. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano, 2019, 13(5): 5703-5711.
doi: 10.1021/acsnano.9b01094 pmid: 31042355
[23] ZHANG Xu A, YU Shangjie, XU Beibei, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019, 363(6427): 619-623.
doi: 10.1126/science.aau1217 pmid: 30733415
[24] WANG Yuanfeng, LIANG Xin, ZHU He, et al. Reversible water transportation diode: temperature-adaptive smart janus textile for moisture/thermal management[J]. Advanced Functional Materials, 2020, 30(6): 1907851-1907859.
doi: 10.1002/adfm.201907851
[25] WONG Angela, DAOUD Walid A, LIANG Hanhua, et al. Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric[J]. Solar Energy Materials and Solar Cells, 2015, 134: 425-437.
doi: 10.1016/j.solmat.2014.12.011
[26] PANWAR Kamlesh, JASSAL Manjeet, AGRAWAL Ashwini K. TiO2-SiO2 Janus particles treated cotton fabric for thermal regulation[J]. Surface and Coatings Technology, 2017, 309: 897-903.
doi: 10.1016/j.surfcoat.2016.10.066
[27] SIMA Kashi, GUPTA Rahul K, BAUM Thomas, et al. Phase transition and anomalous rheological behaviour of polylactide/graphene nanocomposites[J]. Composites Part B: Engineering, 2018, 135: 25-34.
doi: 10.1016/j.compositesb.2017.10.002
[28] ABBAS Amir, ZHAO Yan, WANG Xungai, et al. Cooling effect of MWCNT-containing composite coatings on cotton fabrics[J]. Journal of The Textile Institute, 2013, 104(8): 798-807.
doi: 10.1080/00405000.2012.757007
[29] YE Changqing, LI Mingzhu, HU Junping, et al. Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective ″cool roof″[J]. Energy & Environmental Science, 2011, 4(9): 3364-3367.
[30] SHI Normannan, TSAI Chengchia, CAMINO Fernando, et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants[J]. Science, 2015, 349(6245): 298-301.
doi: 10.1126/science.aab3564 pmid: 26089358
[31] PETHAIYAN Jeevanandam, MULUKUTLA R S, Phillips M, et al. Near infrared reflectance properties of metal oxide nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(5): 1912-1918.
doi: 10.1021/jp066363o
[32] THONGKANLUANG Thadsanee, LIMSUWAN Pichet, RAKKWAMSUK Pattana. Preparation and application of high near-infrared reflective green pigment for ceramic tile roofs[J]. International Journal of Applied Ceramic Technology, 2011, 8(6): 1451-1458.
doi: 10.1111/j.1744-7402.2010.02599.x
[33] MAHLTIG Boris, ZHANG Jieyang, WU Linfei, et al. Effect pigments for textile coating: a review of the broad range of advantageous functionalization[J]. Journal of Coatings Technology & Research, 2017, 14(1): 35-55.
[34] CUI Yuxing. Study and development of near-infrared reflective and absorptive materials for energy saving application[D]. Canada: Carleton University, 2012: 11-14.
[35] WONG Ho Yan Angela. Near-infrared reflective materials for textiles[D]. Hong Kong: The Hong Kong Polytechnic University, 2015: 3-24.
[36] ÖNDER KARAO'LU Emel, SARIER Nihal. Functional finishes for textiles: improving comfort, performance and protection[M]. Amsterdam: Elsevier, 2015: 17-98.
[37] MENACHEM Lewin. Handbook of fiber chemistry[M]. 3rd ed. Boca Raton: CRC Press, 2006: 1056.
[38] YANG Ankun, CAI Lili, ZHANG Rufan, et al. Thermal management in nanofiber-based face mask[J]. Nano Letters, 2017, 17(6): 3506-3510.
doi: 10.1021/acs.nanolett.7b00579 pmid: 28505460
[39] TONG Jonathan K, HUANG Xiaopeng, BORISKINA Svetlana V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6): 769-778.
doi: 10.1021/acsphotonics.5b00140
[40] FAN Wei, ZHANG Ge, ZHANG Xiaolin, et al. Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management[J]. Small, 2022, 18(10): 2107150.
doi: 10.1002/smll.202107150
[41] IQBAL Mohammad Irfan, SUN Fengxin, FEI Bin, et al. Knit architecture for water-actuating woolen knitwear and its personalized thermal management[J]. ACS Applied Materials & Interfaces, 2021, 13(5): 6298-6308.
[1] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[2] 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58.
[3] 王莉, 张冰洁, 王建萍, 刘莉, 杨雅岚, 姚晓凤, 李倩文, 卢悠. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(05): 66-72.
[4] 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101.
[5] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[6] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[7] 雷敏, 李毓陵, 马颜雪, 程隆棣, 周峰. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(07): 174-181.
[8] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[9] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[10] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[11] 王诗潭 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10): 153-159.
[12] 张璐璐 丁放 胡雪燕 王鸿博 杜金梅. 疏水图形及面积对棉织物吸湿快干性能的影响[J]. 纺织学报, 2017, 38(09): 89-93.
[13] 李利君 宋国文 李睿 王丽文 向春晖. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017, 38(03): 122-125.
[14] 马崇启 蔡薇琦 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12): 29-32.
[15] 张纪婷 蒋高明. 保暖涤纶割圈绒织物的热湿舒适性[J]. 纺织学报, 2015, 36(04): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!