纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 67-73.doi: 10.13475/j.fzxb.20220708601
范梦晶1, 吴玲娅1, 周歆如1, 洪剑寒1,2(), 韩潇1,2, 王建1,2
FAN Mengjing1, WU Lingya1, ZHOU Xinru1, HONG Jianhan1,2(), HAN Xiao1,2, WANG Jian1,2
摘要:
为获得线形螺旋结构且具有良好传感性能的大应变柔性应变-电容传感器,采用水浴静电纺丝法以镀银聚酰胺6为芯纱,制备了镀银聚酰胺6/聚酰胺6纳米纤维包芯纱,并将其缠绕在橡筋上制备应变-电容式柔性传感器。对纳米纤维包芯纱的结构与力学性能进行表征与测试,分析了应变-电容传感器的传感性能,并探索了其在人体运动监测中的应用。结果表明:聚酰胺6纳米纤维在镀银聚酰胺6表面形成结构完整的包覆层,直径分布主要在80~100 nm范围内,平均直径为95.53 nm;相较于芯纱,纳米纤维包芯纱的力学性能基本保持不变;制备的柔性传感器表现出良好的应变-电容传感性能,在6.67%的应变下敏感因子可达3.93,并具有良好的重复性,该传感器可用于人体运动的实时监测。
中图分类号:
[1] | CHEN D, CHEN T, LI Y, et al. A flexible sensor based on 3D gold @carbonaceous nanohybrid with defect sites of conductivity for the wearable sensing at low stress[J]. Nano, 2021. DOI:10.1142/S1793292021 500442. |
[2] | ALAM N N, FAIZ R, IMAM M H. Development of a low-cost textile sensor based insole to monitor foot pressure of diabetic patients[J]. Journal of Medical Engineering & Technology, 2022, 46(4): 288-299. |
[3] |
PIGNANELLI J, SCHLINGMAN K, CARMICHAEL T B, et al. A comparative analysis of capacitive-based flexible PDMS pressure sensors[J]. Sensors and Actuators A: Physical, 2019, 285: 427-436.
doi: 10.1016/j.sna.2018.11.014 |
[4] |
BAEK S, JANG H, KIM S Y, et al. Flexible piezocapacitive sensors based on wrinkled microstructures: toward low-cost fabrication of pressure sensors over large areas[J]. RSC Advances, 2017, 7(63): 39420-39426.
doi: 10.1039/C7RA06997A |
[5] | SHUAI X, ZHU P, ZENG W, et al. Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26314-26324. |
[6] | ZHANG Q, WANG Y L, XIA Y, et al. Textile-only capacitive sensors for facile fabric integration without compromise of wearability[J]. Advanced Materials Technologies, 2019. DOI:10.1002/admt.201900485. |
[7] | KIM S R, KIM J H, PARK J W. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26407-26416. |
[8] |
CHHETRY A, YOON H, PARK J Y. A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics[J]. Journal of Materials Chemistry C, 2017, 5(38): 10068-10076.
doi: 10.1039/C7TC02926H |
[9] | 肖渊, 李红英, 李倩, 等. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(5):79-83. |
XIAO Yuan, LI Hongying, LI Qian, et al. Fabrication of flexible pressure sensor with fabric/polydimethylsiloxane composite dielectric layer[J]. Journal of Textile Research, 2021, 42(5):79-83. | |
[10] |
LEE J, KWON H, SEO J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 2015, 27(15): 2433-2439.
doi: 10.1002/adma.v27.15 |
[11] |
LIU Z F, FANG S, MOURA F A, et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles[J]. Science, 2015, 349(6246): 400-404.
doi: 10.1126/science.aaa7952 |
[12] | 佑晓露. 基于纳米纤维包芯纱的压力传感器的制备及性能表征[J]. 上海纺织科技, 2018, 46(11):24-27. |
YOU Xiaolu. Preparation and characterization of pressure sensor based on nano-fiber core-spun yarn[J]. Shanghai Textile Science & Technology, 2018, 46(11):24-27. | |
[13] | 胡铖烨, 马金星, 周歆如, 等. 基于水浴静电纺的芳纶/PA6纳米纤维包芯纱制备与表征[J]. 丝绸, 2022, 59(1):31-37. |
HU Chengye, MA Jinxing, ZHOU Xinru, et al. Preparation and characterization of PPTA/PA6 nanofiber core-spun yarn based on water bath electrospinning[J]. Journal of Silk, 2022, 59(1):31-37. | |
[14] | 胡铖烨, 周歆如, 范梦晶, 等. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(9):95-100. |
HU Chengye, ZHOU Xinru, FAN Mengjing, et al. Preparation and properties of skin-core micro/nano fiber composite yarn[J]. Journal of Textile Research, 2022, 43(9):95-100. |
[1] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[2] | 李修田, 宋伟广, 张丽平, 杜长森, 付少海. 聚酰胺原液着色母粒的制备及其性能[J]. 纺织学报, 2023, 44(11): 45-51. |
[3] | 李睿, 王梦柯, 于春晓, 郑晓頔, 邱志成, 李志勇, 武术方. 原位聚合法聚酰胺6/炭黑复合纤维的制备及其性能[J]. 纺织学报, 2023, 44(10): 1-8. |
[4] | 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56. |
[5] | 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56. |
[6] | 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10. |
[7] | 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33. |
[8] | 陈琛, 韩燚, 孙海燕, 姚诚凯, 高超. 花状氧化石墨烯原位展开共聚聚酰胺6及其功能纤维[J]. 纺织学报, 2023, 44(01): 47-55. |
[9] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[10] | 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115. |
[11] | 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104. |
[12] | 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18. |
[13] | 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83. |
[14] | 廖壑, 王建宁, 张东剑, 甘学辉, 张玉梅, 王华平. 并列复合纺丝孔道内流动组分的界面分布数值模拟[J]. 纺织学报, 2021, 42(01): 30-34. |
[15] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
|