纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 189-196.doi: 10.13475/j.fzxb.20220801001

• 机械与器材 • 上一篇    下一篇

针织智能车间自动换筒任务调度技术

孙磊1,2, 屠佳佳1,2, 毛慧敏1,2, 王俊茹1,2, 史伟民1,2()   

  1. 1.浙江理工大学 机械与自动控制学院, 浙江 杭州 310018
    2.浙江理工大学浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
  • 收稿日期:2022-12-28 修回日期:2023-03-12 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 史伟民(1965—),男,教授,博士。主要研究方向为纺织机械自动化控制。E-mail:swm@zstu.edu.cn
  • 作者简介:孙磊(1996—),男,博士生。主要研究方向为智能纺织装备技术。
  • 基金资助:
    国家重点研发计划项目(2017YFB1304000)

Task scheduling technology for automatic bobbin replacement in intelligent knitting workshop

SUN Lei1,2, TU Jiajia1,2, MAO Huimin1,2, WANG Junru1,2, SHI Weimin1,2()   

  1. 1. College of Mechanical and Automatic Control, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-12-28 Revised:2023-03-12 Published:2023-12-15 Online:2024-01-22

摘要:

在圆型纬编针织智能车间中,为实现针织换筒机器人自动换筒的合理调度,保证纱筒更换效率,提出一种考虑纱筒余纱量的针织换筒机器人换筒任务调度方法。基于纱筒余纱量、换筒任务响应时间、换筒任务总路径和圆机生产连续性等约束结合纱筒更换时序要求和换筒机器人运行速度,建立了以改进遗传算法为核心的针织换筒机器人自动换筒任务调度模型。基于换筒工序改进启发规则,对针织自动换筒任务进行选择排序,优化算法在排序生产和换筒路径规划中的合理性,提升换筒效率。实验测试表明,基于纱筒余纱量约束改进的遗传算法换筒效率优于单纯按空纱筒时间依次排序的算法,效率提升40%左右,且算法前期的收敛速度优于传统遗传算法,提升50%左右,对促进针织生产全流程自动化、换筒工序智能化发展具有实际的参考价值。

关键词: 针织圆机, 纱筒余纱量, 任务调度, 针织换筒机器人, 遗传算法, 针织智能车间

Abstract:

Objective Aiming at the automatic production of the whole process of the circular knitting machine in an intelligent workshop, this research concentrates on the reasonable scheduling of the automatic bobbin replacement of the knitting robot with acceptable efficiency.
Method In the knitting production shops, the effectiveness of bobbin replacement plays a critical role in ensuring uninterrupted production on circular knitting machines. In order to satisfy production demands for bobbin replacement, a comprehensive consideration of various factors is required, such as the amount of yarn remaining in the bobbin, the response time of the bobbin replacement task, and the path followed by the robot during bobbin replacement. This paper presents a multi-objective optimization model for the bobbin replacement task in intelligent knitting workshops and prioritizes the bobbin replacement tasks based on optimizing the heuristic rules for the replacement process. An improved genetic algorithm that takes into account the amount of remaining yarn is introduced for minimizing the overall path length of the bobbin replacement process and decreasing emergency coefficients for bobbin replacement. Emphasis is placed on replacing yarn bobbin with high emergency coefficients to optimize the production sequencing and bobbin replacement path planning, leading to improved bobbin replacement efficiency.
Results To further verify the effectiveness of the algorithm proposed in this paper, comparative experiments were conducted with ant colony algorithm, genetic algorithm, and the improved algorithm presented in this paper. The results showed that compared with the other two algorithms, the proposed algorithm exhibited outstanding performance in both algorithm convergence and solution stability. Compared to the traditional genetic algorithm, the proposed algorithm demonstrated a 50% improvement in early convergence speed and a theoretical 40% increase in efficiency for bobbin replacement. An effective solution is proposed for the bobbin replacement task in the knitting intelligent workshop.
Conclusion This paper proposes an improved genetic algorithm that takes into account the remaining yarn amount. By optimizing the sequence of bobbin replacement from both the total path of the replacement task and the urgency level of the replacement, it has been demonstrated that the constraint of remaining yarn amount can improve the quality of the initial solution of the algorithm. This algorithm can both eliminate inferior solutions with high urgency coefficients of remaining yarn amount and enhance the convergence speed. As a result, the efficiency of bobbin replacement has been improved by 40%, making it a viable solution for scheduling massive bobbin replacement tasks in the intelligent knitting workshop.

Key words: circular knitting machine, remaining yarn amount of bobbin, task scheduling, knitting bobbin changing robot, genetic algorithm, intelligent knitting workshop

中图分类号: 

  • TS181.8

图1

圆型纬编针织机器人调度系统功能框图"

图2

针织换筒机器人换筒任务流程"

图3

车间平面布局示意图"

图4

改进遗传算法流程图"

表1

换筒任务列表"

换筒任务编号 X轴坐标 Y轴坐标 Z轴坐标 余纱量/%
0 13 5 4 84
1 2 3 4 69
2 4 3 3 33
3 11 2 4 45
4 10 5 1 86
5 1 2 4 39
64 7 3 3 30
65 8 5 8 20
66 10 1 7 22
67 12 5 1 27
68 13 2 3 94
69 7 4 4 21

图5

换筒点位信息"

图6

不同算法对比的收敛曲线"

图7

换筒任务纱筒余纱量信息"

图8

算法求解稳定性"

[1] 陈湘瑾, 崔文卓, 魏亚林, 等. 信息技术在纺织工业中的应用浅谈[J]. 轻纺工业与技术, 2021, 50(5):72-73.
CHEN Xiangjin, CUI Wenzhuo, WEI Yalin, et al. Application of information technology in textile ind-ustry[J]. Light and Textile Industry and Technology, 2021, 50(5):72-73.
[2] 高华斌. 抓住产业变革机遇推进信息技术与纺织工业深度融合[J]. 中国纺织, 2021(Z4): 112-113.
GAO Huabin. Seize the opportunity of industrial reform to promote the deep integration of information technology and textile industry[J]. China Textile, 2021(Z4): 112-113.
[3] WANG Yan, JIA Zhaohong, LI Kai. A multi-objective co-evolutionary algorithm of scheduling on parallel non-identical batch machines[J]. Expert Systems With Applications, 2020.DOI:10.1016/j.eswa.2020.114115.
[4] CHOU Fuhder, WANG Huimei. Genetic algorithm for parallel-machine batching and scheduling to minimize total weighted tardiness[J]. Information Technology for Manufacturing Systems, 2011, 58:1142-1147.
[5] 李昆鹏, 刘腾博, 阮炎秋. 半导体生产车间智能AGV路径规划与调度[J]. 计算机集成制造系统, 2022. DOI:10.13196/j.cims.2022.09.026.
LI Kunpeng, LIU Tengbo, RUAN Yanqiu. Research on intelligent AGV routing scheduling with applications in semi-conductor production[J]. Computer Integrated Manufacturing Systems, 2022. DOI:10.13196/j.cims.2022.09.026.
[6] 叶杭璐, 何利力. 基于改进蚁群算法的智慧物流调度规划[J]. 计算机系统应用, 2021, 30(1):207-213.
YE Hanglu, HE Lili. Intelligent logistics distribution route planning based on improved ant colony alg-orithm[J]. Computer Systems & Applications, 2021, 30(1):207-213.
[7] 吕媛媛, 樊坤, 瞿华, 等. 多目标粒子群算法求解混合多处理机任务作业车间调度问题研究[J]. 小型微型计算机系统, 2022, 43(1):218-224.
LÜ Yuanyuan, FAN Kun, QU Hua, et al. Research on multi-objective particle swarm algorithm for solving hybrid job-shop scheduling with multiprocessor task[J]. Journal of Chinese Computer Systems, 2022, 43(1):218-224.
[8] 周亚勤, 王攀, 张朋, 等. 纬编织造车间生产调度方法研究[J]. 纺织学报, 2021, 42(4):170-176.
ZHOU Yaqin, WANG Pan, ZHANG Peng, et al. Research on production scheduling method for weft knitting workshops[J]. Journal of Textile Research, 2021, 42(4):170-176.
[9] 沈春娅, 雷钧杰, 汝欣, 等. 基于改进型NSGAⅡ的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(4):74-83.
SHEN Chunya, LEI Junjie, RU Xin, et al. Multi-objective large-scale dynamic scheduling of weaving workshop based on improved NSGAII[J]. Journal of Textile Research, 2022, 43(4):74-83.
[10] 张晓寒, 邹光明, 王炯, 等. 改进PSO和机器状态对车间任务调度研究[J]. 计算机应用与软件, 2019, 36(1):320-324.
ZHANG Xiaohan, ZOU Guangming, WANG Jiong, et al. Job shop scheduling base on improved PSO and machine state[J]. Computer Applications and Software, 2019, 36(1):320-324.
[11] 朱明哲, 孙丙宇. 基于遗传算法的工厂仓储系统多AGV调度策略研究[J]. 电子技术, 2021, 50(1):33-37.
ZHU Mingzhe, SUN Bingyu. Study on multi-AGV scheduling strategy of factory warehouse system based on genetic algorithm[J]. Computer Engineering, 2021, 50(1):33-37.
[12] 杨帆, 方成刚, 洪荣晶, 等. 改进遗传算法在车间调度问题中的应用[J]. 南京工业大学学报(自然科学版), 2021, 43(4):480-485.
YANG Fan, FANG Chenggang, HONG Rongjing, et al. Application of improved genetic algorithm in job-shop scheduling problem[J]. Journal of Nanjing Technology University (Natural Science Edition), 2021, 43(4):480-485.
[13] 王怀江, 刘晓平, 王刚, 等. 基于改进遗传算法的移动机械臂拣选路径优化[J]. 北京邮电大学学报, 2020, 43(5):34-40.
WANG Huaijiang, LIU Xiaoping, WANG Gang, et al. Optimization of mobile manipulator sorting path based onimproved genetic algorithm[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(5):34-40.
[14] 黄基诞, 李楠, 晏爱敏, 等. 考虑准备时间和加工速度的纺织纤维实验加工调度[J]. 实验室研究与探索, 2020, 39(4):14-18.
HUANG Jidan, LI Nan, YAN Aimin, et al. Textile fiber manufacturing experiment scheduling considering the setup time and processing speed[J]. Research and Exploration in Laboratory, 2020, 39(4):14-18.
[1] 陈莎, 修毅, 李雪飞. 基于遗传算法的服装大规模定制生产线平衡优化[J]. 纺织学报, 2022, 43(12): 144-150.
[2] 杨晓波. 基于交互式遗传算法的三维服装款式研究[J]. 纺织学报, 2022, 43(06): 145-150.
[3] 潘佳豪, 周其洪, 岑均豪, 李姝佳, 周申华. 服装企业包装订单分配排序优化模型及其快速非支配遗传算法求解[J]. 纺织学报, 2022, 43(05): 156-162.
[4] 邵景峰, 石小敏. 基于非支配排序遗传算法的细纱工艺参数优化[J]. 纺织学报, 2022, 43(01): 80-88.
[5] 谢子昂, 杜劲松, 余雅芸, 陈清婷, 费中华. 西服定制吊挂生产线的筛选秩序优化[J]. 纺织学报, 2021, 42(10): 150-156.
[6] 许雪梅. 基于模拟退火算法改进遗传算法的织物智能配色[J]. 纺织学报, 2021, 42(07): 123-128.
[7] 周亚勤, 王攀, 张朋, 张洁. 纬编织造车间生产调度方法研究[J]. 纺织学报, 2021, 42(04): 170-176.
[8] 张卓, 丛洪莲, 蒋高明, 董智佳. 基于交互式遗传算法的Polo衫快速款式推荐系统[J]. 纺织学报, 2021, 42(01): 138-144.
[9] 李亮, 倪俊芳. 绗缝机花样加工代码自动生成算法[J]. 纺织学报, 2020, 41(11): 162-167.
[10] 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149.
[11] 张晓侠, 刘凤坤, 买巍, 马崇启. 基于BP神经网络及其改进算法的织机效率预测[J]. 纺织学报, 2020, 41(08): 121-127.
[12] 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(07): 154-159.
[13] 郑小虎, 鲍劲松, 马清文, 周衡, 张良山. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(06): 36-41.
[14] 莫帅, 冯战勇, 唐文杰, 党合玉, 邹振兴. 基于神经网络和遗传算法的锭子弹性管性能优化[J]. 纺织学报, 2020, 41(04): 161-166.
[15] 黄淇, 周其洪, 张倩, 王绍宗, 范伟, 孙会丰. 基于系统布置设计-遗传算法的纱线浸染生产线布局优化[J]. 纺织学报, 2020, 41(03): 84-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!