纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 9-15.doi: 10.13475/j.fzxb.20220803201
LOU Huiqing1,2,3(), SHANG Yuanyuan1, CAO Xianzhong2, XU Beilei3
摘要:
为提高太阳能光热转化效率,基于太阳能驱动的界面水蒸发原理,结合粘胶纤维的形貌和性能特点,通过在垂直排列的粘胶纤维束端面构筑碳氮化钛(MXene)作为光热转化层,制备MXene/粘胶纤维束集合体太阳能界面水蒸发器,并系统分析MXene涂层数、光照强度对太阳能界面水蒸发器蒸发性能及稳定性的影响。结果表明:粘胶纤维表面的沟槽结构及其集合体垂直排列形成的毛细孔为水传输提供了有利通道;纤维束集合体端面涂覆光热转换材料MXene和增加光照强度有利于提高器件的水蒸发性能,当MXene涂层数由1层增加至5层时,其蒸发速率和蒸发效率分别从0.78 kg/(m2·h)和39.4%提高至1.47 kg/(m2·h)和74.4%;随着光照强度的增大,太阳能界面水蒸发器的蒸发性能也随之大幅提高,当光照强度由1 kW/m2增加到5 kW/m2时,其蒸发速率由 1.47 kg/(m2·h) 提高至6.45 kg/(m2·h),蒸发效率由70.6%提高至82.4%;太阳能界面水蒸发器在2 kW/m2的光照强度下使用144 h后,其蒸发速率和蒸发效率仍分别高达3.31 kg/(m2·h)和82.1%,与初始值相比仅降低4.1%和3.5%,具有较好的稳定性能。
中图分类号:
[1] | 王次成, 陶晔, 孙佳. 化石燃料能源零能耗太阳能光热海水淡化系统应用研究[J]. 水处理技术, 2017, 43(10): 43-45. |
WANG Cicheng, TAO Ye, SUN Jia. Application research of solar-thermal seawater desalination system with zero fossil fuel energy consumption[J]. Technology of Water Treatment, 2017, 43(10): 43-45. | |
[2] | 马存霖. 太阳能光热利用材料的制备及其性能研究[D]. 青岛: 青岛科技大学, 2019: 8-10. |
MA Cunlin. Preparaton and photothermal properties of solar absorption materials[D]. Qingdao: Qingdao University of Science and Technology, 2019: 8-10. | |
[3] |
TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3: 1031-1041.
doi: 10.1038/s41560-018-0260-7 |
[4] | 苗蕾, 邓梓阳, 周建华, 等. 新型太阳能蒸汽系统及光热材料研究进展[J]. 现代技术陶瓷, 2019, 40(4): 236-254. |
MIAO Lei, DENG Ziyang, ZHOU Jianhua, et al. Research progress of emerging solar-driven steam generation system and photothermal materials[J]. Advanced Ceramics, 2019, 40(4): 236-254. | |
[5] | LI J, JING Y, XING G, et al. Solar-driven interfacial evaporation for water treatment: advanced research progress and challenges[J]. Journal of Materials Chemistry A, 2022, 36(10): 18470-18489. |
[6] |
ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401.
doi: 10.1038/s41578-020-0182-4 |
[7] |
JIA J, LIANG W D, SUN H X, et al. Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency[J]. Chemical Engineering Journal, 2019, 361: 999-1006.
doi: 10.1016/j.cej.2018.12.157 |
[8] |
HUANG D, ZHANG J, WU G, et al. Solar evaporator based on hollow polydopamine nanotubes with all-in-one synergic design for high-efficient water purification[J]. Journal of Materials Chemistry A, 2021, 9: 15776-15786.
doi: 10.1039/D1TA03335B |
[9] | LIU H, JIN R, DUAN S, et al. Anisotropic evaporator with a T-shape design for high-performance solar-driven zero-liquid discharge[J]. Small, 2021. DOI: 10.1002/smll.202100969. |
[10] |
CARATENUTO A, ALJWIRAH A, TIAN Y, et al. Forest waste to clean water: natural leaf-guar-derived solar desalinator[J]. Nanoscale, 2021, 13(42): 17754-17764.
doi: 10.1039/D1NR04883J |
[11] |
郭星星, 高航, 殷立峰, 等. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4): 580-596.
doi: 10.7536/PC180908 |
GUO Xingxing, GAO Hang, YIN Lifeng, et al. Photo-thermal conversion materials and their application in desalination[J]. Progress in Chemistry, 2019, 31(4): 580-596.
doi: 10.7536/PC180908 |
|
[12] | ZHANG Y, XIONG T, NANDAKUMAR D K, et al. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation[J]. Advanced Science, 2020. DOI: 10.1002/advs.201903478. |
[13] |
CHE X, ZHANG W, LONG L, et al. Mildly peeling off and encapsulating large mxene nanosheets with rigid biologic fibrils for synchronization of solar evaporation and energy harvest[J]. ACS Nano, 2022, 16(6): 8881-8890.
doi: 10.1021/acsnano.1c10836 |
[14] |
LI R, ZHANG L, LE S, et al. MXene Ti3C2: an effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): 3752-3759.
doi: 10.1021/acsnano.6b08415 |
[15] | ZHA X J, ZHAO X, PU J H, et al. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36589-36597. |
[16] | LI X P, LI X, LI H, et al. Reshapable MXene/graphene oxide/polyaniline plastic hybrids with patternable surfaces for highly efficient solar-driven water purification[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202110636. |
[17] | LU Y, FAN D, XU H, et al. Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification[J]. Solar RRL, 2020. DOI: 10.1002/solr.202000232. |
[18] | 孟凯, 刘丞, 王凯, 等. 蚕蛹蛋白改性粘胶纤维基本性能探究[J]. 广东蚕业, 2021, 55(10): 10-11. |
MENG Kai, LIU Cheng, WANG Kai, et al. Research on the basic properties of silkworm pupa-viscose-fiber[J]. Guangdong Sericulture, 2021, 55(10): 10-11. | |
[19] | 钱慧河, 王锐, 张大省. PET/EHDPET异形共混纤维非织造布的吸排水性能[J]. 合成纤维工业, 2006, 29(4): 35-37. |
QIAN Huihe, WANG Rui, ZHANG Dasheng. Water absorbability and dewatering capacity of non-woven fabric of PET/EHDPET profiled blend fiber[J]. China Synthetic Fiber Industry, 2006, 29(4): 35-37. |
[1] | 李阳, 封严. 石墨烯基新型抗菌材料的研究进展[J]. 纺织学报, 2023, 44(04): 230-237. |
[2] | 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20. |
[3] | 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25. |
[4] | 杜兆芳 程贤生 黄芙蓉 付正婷. 汽车内饰材料拒水拒油整理及其性能表征[J]. 纺织学报, 2014, 35(11): 118-0. |
|