纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 60-66.doi: 10.13475/j.fzxb.20220803407
吴俊雄1, 尉霞1,2(), 罗璟娴1, 闫姣儒1, 吴磊1,2
WU Junxiong1, WEI Xia1,2(), LUO Jingxian1, YAN Jiaoru1, WU Lei1,2
摘要:
针对芳纶紫外光稳定性差易发生光降解老化的问题,制备外包阻燃腈纶、芳纶为芯纱的包芯纱,用来阻断紫外线对芳纶的直接照射。设计芳纶/芳纶、阻燃腈纶/芳纶、腈氯纶/芳纶、阻燃腈纶/阻燃粘胶/芳纶、阻燃腈纶/阻燃莫代尔/芳纶5种包芯纱,并以包芯纱为纬纱,芳纶为经纱织造织物,测试织物的紫外光老化性、舒适性及阻燃性。结果表明:与纯芳纶织物相比,阻燃腈纶/芳纶、阻燃腈纶/阻燃粘胶/芳纶、阻燃腈纶/阻燃莫代尔/芳纶3种织物的紫外线防护系数分别提高25.8%、18.7%、20.8%,断裂强力分别下降23.1%、37.9%、27.0%,续燃时间分别延长0.9、0.2、0.2 s,阴燃时间分别延长0.3、0.4、0.7 s;老化前后纯芳纶、阻燃腈纶/芳纶、阻燃腈纶/阻燃粘胶/芳纶、阻燃腈纶/阻燃莫代尔/芳纶4种织物断裂强力分别下降43.6%、5.9%、8.3%、9.1%;阻燃腈纶/芳纶织物的舒适性能下降,但阻燃腈纶/阻燃粘胶/芳纶织物的舒适性有所提高;阻燃腈纶/阻燃粘胶/芳纶包芯纱的综合性能最佳,具有良好的紫外光稳定性、舒适性及阻燃性。
中图分类号:
[1] | 刘婷娅. 中美阻燃防护服标准比对分析研究[J]. 中国石油和化工标准与质量, 2020, 40(16): 13-14, 16. |
LIU Tingya. Comparative analysis of Chinese and American flame retardant protective clothing standards[J]. China Petroleum and Chemical Standards and Quality, 2020, 40(16): 13-14, 16. | |
[2] |
DING Fang, ZHANG Shumin, CHEN Xiaoyan, et al. PET fabric treated with environmental-friendly phosphorus-based compounds for enhanced flame retardancy, thermal stability and anti-dripping performance[J]. Composites Part B: Engineering, 2022.DOI: 10.1016/J.COMPOSITESB.2022.109791.
doi: 10.1016/J.COMPOSITESB.2022.109791 |
[3] | 李金凤, 蒋巍. 阻燃剂的复配协效技术及纺织品的阻燃整理[J]. 高分子通报, 2022(1): 46-55. |
LI Jinfeng, JIANG Wei. Compounding and coactivity technology of flame retardants and flame retardant finishing of textiles[J]. Polymer Bulletin, 2022(1): 46-55. | |
[4] | 魏枫, 裴勇勇, 徐海兵, 等. 芳香族聚酰胺纤维抗紫外老化的研究进展[J]. 复合材料科学与工程, 2022(6): 115-121. |
WEI Feng, PEI Yongyong, XU Haibing, et al. Research progress on UV aging resistance of aromatic polyamide fiber[J]. Composites Science and Engineering, 2022(6): 115-121. | |
[5] | 马立群, 董少波, 石佳, 等. 利用废旧聚丙烯腈纤维织物制备聚丙烯用抗老化剂[J]. 中国塑料, 2017, 31(3): 82-89. |
MA Liqun, DONG Shaobo, SHI Jia, et al. Preparation of anti-aging agent for polypropylene using waste polyacrylonitrile fabric[J]. China Plastics, 2017, 31(3): 82-89. | |
[6] | 王丹妮, 聂景怡, 赵永生, 等. KH-550改性纳米二氧化钛对芳纶纳米薄膜抗紫外及力学性能的影响[J]. 高分子材料科学与工程, 2020, 36(8): 58-66. |
WANG Dani, NIE Jingyi, ZHAO Yongsheng, et al. Effect of KH-550 modified nano-TiO2 on UV resistance and mechanical properties of aramid nano-film[J]. Polymer Materials Science and Engineering, 2020, 36(8): 58-66. | |
[7] | 董威然. 抗菌腈纶毛毯的染色加工工艺[J]. 天津纺织科技, 2017(2): 23-25. |
DONG Weiran. Dyeing process of antibacterial acrylic fiber blanket[J]. Tianjin Textile Science and Technology, 2017(2): 23-25. | |
[8] | 尉霞. 产业用纺织品设计与生产[M]. 上海: 东华大学出版社, 2009: 26-28. |
WEI Xia. Design and production of industrial textiles[M]. Shanghai: Donghua University Press, 2009: 26-28. | |
[9] | 颜梦佳, 唐洁芳, 丁笑君, 等. 织物结构参数对芳纶织物阻燃性能的影响[J]. 现代纺织技术, 2019, 27(1): 27-31. |
YAN Mengjia, TANG Jiefang, DING Xiaojun, et al. Influence of fabric structure parameters on flame retardation of aramid fabric[J]. Advanced Textile Technology, 2019, 27(1): 27-31. | |
[10] | 李慧, 宋晓霞. 吸湿排汗针织面料设计及热湿舒适性评价[J]. 服装学报, 2022, 7(3): 196-201, 208. |
LI Hui, SONG Xiaoxia. Design and evaluation of thermal and wet comfort of hygroscopic and perspiration wicking knitted fabrics[J]. Journal of Clothing Research, 2022, 7(3): 196-201, 208. | |
[11] |
LIYEW Erkihun Zelalem. Effect of the imperfection of open-end yarn (thin, thick, and nep place) on air permeability of plain woven fabric[J]. Journal of Engineering, 2022. DOI: 10.1155/2022/8710495.
doi: 10.1155/2022/8710495 |
[12] | 王丽, 郭嫣, 熊艳丽. 探讨提高织物透湿性的方法:以校服为例[J]. 纺织报告, 2017(11): 45-47. |
WANG Li, GUO Yan, XIONG Yanli. Discussion on ways to improve moisture permeability of fabric: taking school uniform as an example[J]. Textile Reports, 2017(11): 45-47. | |
[13] | 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5): 694-702. |
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophilic and hydrophobic micro-nano fiber/cotton fiber core-spun yarn fabrics[J]. Journal of Donghua University (Natural Science), 2020, 46(5): 694-702. | |
[14] | 仵玉芝, 刘向, 郑冬明, 等. 微胞式保暖织物的结构设计及对保暖性的影响[J]. 纺织导报, 2018(9): 94-96. |
WU Yuzhi, LIU Xiang, ZHENG Dongming, et al. Structural design of micro-cell thermal fabric and its effect on thermal preservation[J]. China Textile Leader, 2018(9): 94-96. | |
[15] | 代萌婷, 屠晔. 衣下空气层对咖啡碳纤维防寒服保暖性的影响[J]. 丝绸, 2021, 58(11): 33-39. |
DAI Mengting, TU Ye. Effect of air layer under clothing on the thermal preservation of carbon fiber cold clothing for coffee[J]. Journal of Silk, 2021, 58(11): 33-39. | |
[16] | 苏萌, 任放, 俞鸣明, 等. 温度和纱线捻向对自润滑织物复合材料摩擦磨损性能的影响[J]. 高分子材料科学与工程, 2019, 35(9): 82-88, 94. |
SU Meng, REN Fang, YU Mingming, et al. Effect of temperature and yarn twist direction on friction and wear properties of self-lubricating fabric composites[J]. Polymer Materials Science and Engineering, 2019, 35(9): 82-88, 94. |
[1] | 张昭华, 陈雪, 倪军, 杨玉桐, 邹一凡. 冷环境下局部电加热对人体热反应的影响[J]. 纺织学报, 2023, 44(03): 187-194. |
[2] | 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33. |
[3] | 李龙, 吴磊, 林思伶. 捻度对棉/氨纶/银丝包芯纱性能的影响[J]. 纺织学报, 2023, 44(01): 100-105. |
[4] | 陈佳慧, 梅涛, 赵青华, 尤海宁, 王雯雯, 王栋. 热湿舒适性智能织物的研究进展[J]. 纺织学报, 2023, 44(01): 30-37. |
[5] | 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41. |
[6] | 郭亚飞, 梁高勇, 王美慧, 郝新敏. 臭氧等离子体预处理对芳纶染色性能的影响[J]. 纺织学报, 2022, 43(10): 83-88. |
[7] | 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114. |
[8] | 李宁宁, 张昭华, 徐苏红, 郑子奕, 李霄羽. 热环境下人体局部皮肤湿敏感性的分布特征[J]. 纺织学报, 2022, 43(09): 182-187. |
[9] | 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33. |
[10] | 熊永辉, 王冬, 杜长森, 付少海. 二硫代焦磷酸酯水性分散体系的制备及其在阻燃粘胶纤维中的应用[J]. 纺织学报, 2022, 43(07): 22-28. |
[11] | 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96. |
[12] | 李娜, 王晓, 李振宝, 李佥, 杜冰. 基于腺嘌呤核苷酸单体的光接枝生态阻燃棉织物制备及其性能[J]. 纺织学报, 2022, 43(07): 97-103. |
[13] | 栗辰飞, 刘元军, 赵晓明. 生化防护服的研究进展[J]. 纺织学报, 2022, 43(07): 207-216. |
[14] | 南清清, 曾庆红, 袁竟轩, 王晓沁, 郑兆柱, 李刚. 抗菌功能纺织品的研究进展[J]. 纺织学报, 2022, 43(06): 197-205. |
[15] | 马莹, 刘岳岩, 赵洋, 陈翔, 禄盛, 胡瀚杰. 基于芳纶平纹织物微观几何结构的纱线抽拔力学性能分析[J]. 纺织学报, 2022, 43(04): 47-54. |
|