纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 27-33.doi: 10.13475/j.fzxb.20220803807

• 纤维材料 • 上一篇    下一篇

双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构

周歆如1, 胡铖烨2, 范梦晶1, 洪剑寒1,3(), 韩潇1,3   

  1. 1.绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
    2.浙江洁达新材料科技有限公司, 浙江 绍兴 312000
    3.浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2022-08-15 修回日期:2022-11-22 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 洪剑寒(1982—),男,副教授,博士。主要研究方向为新型纺织材料的制备与应用。E-mail:jhhong@usx.edu.cn。
  • 作者简介:周歆如(1998—),女,硕士生。主要研究方向为功能纳米纤维材料的开发与应用。
  • 基金资助:
    浙江省公益技术研究计划项目(LGG20E030002)

Electric field simulation of two-needle continuous water bath electrospinning and structure of nanofiber core-spun yarn

ZHOU Xinru1, HU Chengye2, FAN Mengjing1, HONG Jianhan1,3(), HAN Xiao1,3   

  1. 1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Zhejiang Jieda New Material Technology Co., Ltd., Shaoxing, Zhejiang 312000, China
    3. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
  • Received:2022-08-15 Revised:2022-11-22 Published:2023-02-15 Online:2023-03-07

摘要:

为研究电场变化对皮芯结构纳米纤维包芯纱结构的影响,通过双针头连续水浴静电纺丝法制备了以涤纶长丝为芯纱,锦纶纳米纤维为包覆层,兼具纳米纤维特性和传统纱线力学性能的纳米纤维包芯纱。通过有限元分析软件ANSYS模拟其电场分布,探究了2个针头针尖间距对电场分布及纳米纤维包芯纱结构的影响。结果表明:静电纺丝最大电场强度出现在针尖处,随着针尖间距的增大,电场强度峰值呈现先增大后减小再增大的趋势;当针尖间距为20 mm时,纳米纤维间的黏结较多;随着针尖间距的增大,纳米纤维的形貌更加均匀光滑,其直径呈减小趋势,在针尖间距为80 mm时达到最小值(74.43±10.79) nm;当针尖间距从20 mm增加到60 mm时,纳米纤维包芯纱的孔隙率从20.27%提高到44.08%。

关键词: 双针头, 连续水浴, 静电纺丝, 纳米纤维包芯纱, 电场模拟, 针头间距, 涤纶, 锦纶

Abstract:

Objective In order to understand the influence of electric field variation on the structure of nanofiber core-spun yarn with skin core structure with two-needle continuous water bath, finite element analysis software ANSYS is used to simulate the change of electric field distribution in the tip spacing. The morphology, diameter distribution, porosity and other structures of nanofiber core-spun yarns with different tip spacing were analyzed. The work aims to establish a theoretical basis for the optimization of process parameters of electrospinning, and provide a reference for the preparation of nanofiber core-spun yarn.
Method The continuous preparation of nanofiber core-spun yarn was achieved by using a self-made electrospinning equipment. The nanofiber core-spun yarn with polyester filament as the core yarn and polyamide 6 nanofiber as the coating layer was prepared by two-needle continuous water bath electrospinning method, aiming to acquire special properties combining the nanofiber and traditional yarn. Through the finite element analysis software ANSYS modeling analysis and scanning electron microscope observation, the theoretical and scientific study of the impact of needle tip spacing was carried out on the electric field distribution and nanofiber core-spun yarn structure.
Results By simulating the distribution and variation of electrospinning electric field with two needles, it can be confirmed that the maximum field intensity occurs at the tip of the needle. With the increase of tip spacing, the field intensity increases first then decreases and then increases as shown in Tab. 1. When the tip spacing was set greater than 40 mm, the field intensity peak with the increase of the tip spacing and gradually rise. However, considering the restrictions on the size of the electrostatic spinning equipment, and the limitation of fiber sedimentary area, tip spacing should not be too large. The needle tip spacing of 30 mm is better according to the analysis of the Tab. 1. The diameter and morphology of nanofibers can be adjusted by altering the tip spacing. According to the electron microscopy, when the tip spacing is 20 mm, the electric field interference leads to more bonding between the nanofiber. As the tip spacing increases, the interaction between the needles decreases, the morphology of nanofibers becomes more uniform and smooth, and the diameter of nanofibers decreases, as shown in Fig. 5. When the tip spacing is 80 mm, the diameter of the nanofiber reaches the minimum value of (74.43±10.79) nm. It is learnt that two-needle electrospinning requires special attention to the tip spacing while improving the yield of nanofibers to avoid the instability of jet flow caused by too small tip spacing. When the needle tip spacing is increased from 20 mm to 60 mm, the porosity of nanofiber core-spun yarn increased from 20.27% to 44.08%, indicating that the interaction between needles weakened with the increase of tip spacing, leading to improved porosity(as shown in Fig. 7).
Conclusion The simulation results show that the maximum field intensity appears at the tip, and the field intensity peak increases first, then decreases and then increases with the increase of the tip spacing. According to the electron microscopy, with the increase of the tip spacing, the interaction between the needles decreases, which can improve the porosity of the nanofiber core-spun yarn, and the diameter of the nanofiber decreases. The structure of the nanofiber core-spun yarn conforms to the changing law of the electric field strength. The results of electric field simulation have guiding significance for the study of the structure of nanofiber core-spun yarns. Due to the problems of electric field interference and equipment limitation in the experimental results, the study of process parameters is of great significance to the electric field variation in the process of electrospinning, which provide reference for subsequent research experiments. The further optimization of equipment and fiber structure and industrial production application are expected to be further discussed in future research.

Key words: two-needle, continuous water bath, electrospinning, nanofiber core-spun yarn, electric field simulation, tip spacing, polyester, polyamide 6

中图分类号: 

  • TQ340.69

图1

自制双针头连续水浴静电纺丝设备示意图 注:0-导纱孔;1、9、12、14―电动机;2―旋转支架;3―芯纱筒子;4―高压电源;5―注射喷头;6―水浴接收盘; 7―接地铜片;8―热风干燥装置;10―旋转支架;11―卷绕辊;13―横移装置。"

图2

电场模拟初始图"

图3

不同针尖间距下针尖附近平面的电场模拟图"

图4

电场强度沿针头中心线的变化趋势"

表1

不同针尖间距的针尖中心电场强度"

针尖间距/mm 针尖中心的电场强度/(106 V·m-1)
20 15.14
30 15.84
40 14.98
60 15.35
80 16.90

图5

纳米纤维包芯纱在不同针尖间距下的表面形貌照片(×10 000)"

图6

不同针尖间距下纳米纤维的直径变化"

图7

不同针尖间距下纳米纤维包芯纱的孔隙率"

[1] 程翠林, 马佳沛, 王玮琛, 等. 天然产物静电纺纳米纤维在生物医药方面的应用[J]. 应用化学, 2021, 38(6): 605-614.
doi: 10.19894/j.issn.1000-0518.200269
CHENG Cuilin, MA Jiapei, WANG Weichen, et al. Application of natural product electrostatic spinning nanofibers in biomedicine[J]. Applied Chemistry, 2021, 38(6): 605-614.
[2] 解健, 苏俭生. 静电纺丝取向纳米纤维作为组织工程生物支架的优势与特征[J]. 中国组织工程研究, 2021, 25(16): 2575-2581.
XIE Jian, SU Jiansheng. Advantages and characteristics of electrospinning oriented nanofibers as tissue engineering biological scaffolds[J]. Chinese Tissue Engineering Research, 2021, 25(16): 2575-2581.
[3] LUZIO A, CANESI E V, BERTARELLI C, et al. Electrospun polymer fibers for electronic applica-tions[J]. Materials, 2014, 7(2): 906-947.
doi: 10.3390/ma7020906
[4] 周筱雅, 马定海, 胡铖烨, 等. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(2): 113-119.
ZHOU Xiaoya, MA Dinghai, HU Chengye, et al. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarn[J]. Journal of Textile Research, 2022, 43(2): 113-119.
[5] 佑晓露. 基于纳米纤维包芯纱的压力传感器的制备及性能表征[J]. 上海纺织科技, 2018, 46(11): 24-27.
YOU Xiaolu. Preparation and characterization of pressure sensors based on nanofiber core-spun yarns[J]. Shanghai Textile Science & Technology, 2018, 46(11): 24-27.
[6] CAI J Y, XIAN X R, LI D D, et al. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering[J]. Biomaterials Science, 2020, 8(16): 4413-4425.
doi: 10.1039/d0bm00816h pmid: 32648862
[7] BAZBOUZ M B, STYLIOS G K. Novel mechanism for spinning continuous twisted composite nanofiber yarns[J]. European Polymer Journal, 2008, 44(1): 1-12.
doi: 10.1016/j.eurpolymj.2007.10.006
[8] FARZAD D, HOSSEINI R S A, HINESTROZA J P, et al. Conformal coating of yarns and wires with electrospun nanofibers[J]. Polymer Engineering & Science, 2012, 52(8): 1724-1732.
[9] ZHOU F L, GONG R H, PORAT I. Nano-coated hybrid yarns using electrospinning[J]. Surface & Coatings Technology, 2010, 204(21): 3459-3463.
doi: 10.1016/j.surfcoat.2010.04.021
[10] 刘呈坤, 贺海军, 孙润军, 等. 纺丝工艺对静电纺纳米纤维包芯纱包覆性能的影响[J]. 高分子材料科学与工程, 2016, 32(12): 82-86.
LIU Chengkun, HE Haijun, SUN Runjun, et al. Effect of spinning process on coating properties of electrospinning nanofiber core-spun yarns[J]. Polymer Materials Science & Engineering, 2016, 32(12): 82-86.
[11] 周明阳. 共轭电纺设备与工艺的研究[D]. 南京: 东南大学, 2008: 44-47.
ZHOU Mingyang. Study on conjugated electrospinning equipment and technology[D]. Nanjing: Southeast University, 2008: 44-47.
[12] HE J X, ZHOU Y M, WU Y C, et al. Nanofiber coated hybrid yarn fabricated by novel electrospinning-airflow twisting method[J]. Surface and Coatings Technology, 2014, 258: 398-404.
doi: 10.1016/j.surfcoat.2014.08.062
[13] HE J X, ZHOU Y M, WANG L D, et al. Fabrication of continuous nanofiber core-spun yarn by a novel electrospinning method[J]. Fibers and Polymers, 2014, 15(10): 2061-2065.
doi: 10.1007/s12221-014-2061-3
[14] HE J X, QI K, WANG L D, et al. Combined application of multinozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn[J]. Fibers and Polymers, 2015, 16(6): 1319-1326.
doi: 10.1007/s12221-015-1319-8
[15] 彭蕙, 毛宁, 覃小红. 不同亲疏水性微纳米纤维/棉纤维包芯纱织物的导湿性能[J]. 东华大学学报(自然科学版), 2020, 46(5): 694-702.
PENG Hui, MAO Ning, QIN Xiaohong. Moisture conductivity of different hydrophilic and hydrophobic micro-nano fiber/cotton fiber core-spun yarn fabrics[J]. Journal of Donghua University(Natural Science), 2020, 46(5): 694-702.
[16] 胡铖烨, 周歆如, 范梦晶, 等. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(9): 95-100.
HU Chengye, ZHOU Xinru, FAN Mengjing, et al. Preparation and properties of skin-core micro/nano fiber composite yarn[J]. Journal of Textile Research, 2022, 43(9): 95-100.
[17] 刘呈坤, 来侃, 孙润军, 等. 多针头静电纺丝工艺过程探讨[J]. 纺织学报, 2012, 33(8): 7-10.
LIU Chengkun, LAI Kan, SUN Runjun, et al. Discussion on multi-needle electrostatic spinning pro-cess[J]. Journal of Textile Research, 2012, 33(8): 7-10.
[18] 吴元强, 许宁, 陆振乾, 等. 多针头静电纺丝电场强度分布模拟研究[J]. 合成纤维工业, 2019, 42(5): 41-45.
WU Yuanqiang, XU Ning, LU Zhenqian, et al. Simulation of electric field intensity distribution in multi-needle electrospinning[J]. China Synthetic Fiber Industry, 2019, 42(5): 41-45.
[19] 陈威亚, 刘延波, 王洋知, 等. 多针头静电纺丝过程中电场强度与分布的有限元分析[J]. 纺织学报, 2014, 35(6): 1-6.
CHEN Weiya, LIU Yanbo, WANG Yangzhi, et al. Finite element analysis of electric field intensity and distribution in multi-needle electrospinning[J]. Journal of Textile Research, 2014, 35(6): 1-6.
doi: 10.1177/004051756503500101
[20] 张蒙. 多针头静电纺丝的数值模拟研究[D]. 上海: 东华大学, 2015: 26-28.
ZHANG Meng. Numerical simulation of multi-needle electrospinning[D]. Shanghai: Donghua University, 2015: 26-28.
[21] 王丹, 单小红, 潘江贵. Photoshop和MatLab软件在纳米纤维膜孔隙率测试中的应用[J]. 产业用纺织品, 2016, 34(6): 41-44.
WANG Dan, SHAN Xiaohong, PAN Jianggui. Application of Photoshop and MatLab in porosity measurement of nanofiber membrane[J]. Technical Textiles, 2016, 34(6): 41-44.
[1] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[2] 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142.
[3] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[4] 曲连艺, 刘江龙, 徐英俊, 王玉忠. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 176-183.
[5] 于学智, 张明光, 曹继鹏, 张月, 王晓燕. 捻度对锦纶/棉混纺纱质量指标的影响[J]. 纺织学报, 2023, 44(01): 106-111.
[6] 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148.
[7] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[8] 赵智伟, 王子希, 杨世玉, 胡毅. 基于锦纶滤膜喷墨印花制备镓-铟合金液态金属电路[J]. 纺织学报, 2022, 43(12): 102-108.
[9] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[10] 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
[11] 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21.
[12] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[13] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[14] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[15] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[4] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[5] 刘从九. 我国纺织品绿色国际竞争力[J]. 纺织学报, 2004, 25(02): 116 -118 .
[6] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[7] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[8] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[9] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[10] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .