纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 151-158.doi: 10.13475/j.fzxb.20220804208

• 纺织工程 • 上一篇    下一篇

基于睡袋温标模型的被子舒适温度测定与可行性验证

郑晴1, 严芳英1, 柯莹2, 王鸿博1()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.江南大学 设计学院, 江苏 无锡 214122
  • 收稿日期:2022-08-16 修回日期:2022-10-15 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 王鸿博(1963—),男,教授,博士。主要研究方向为功能纺织材料。E-mail:wxwanghb@163.com。
  • 作者简介:郑晴(1994—),女,博士生。主要研究方向为纺织品舒适性与环境工效学。
  • 基金资助:
    教育部人文社会科学研究青年基金项目(20YJCZH063)

Determination and validation of comfort temperatures for quilts based on temperature rating model of sleeping bags

ZHENG Qing1, YAN Fangying1, KE Ying2, WANG Hongbo1()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. School of Design, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-08-16 Revised:2022-10-15 Published:2023-02-15 Online:2023-03-07

摘要:

为提高人体睡眠质量,满足热舒适需求,探究被子的舒适温度,基于睡袋温标模型提出了被子舒适低温和舒适高温的计算方法。为验证计算方法的可行性,测试了4种不同填充量的蚕丝、鹅绒和化纤被的热舒适性。通过睡眠实验获得10名受试者在所计算的舒适温度下使用各类被子时的皮肤温度和主观热感受。结果表明:不同种类被子的舒适高温和舒适低温存在差异,且二者的差值随着被子填充量的增加而增大;使用不同种类的被子时,平均皮肤温度和远端-近端皮肤温度梯度存在显著差异,与主观感觉评价相一致,表明了基于睡袋温标模型计算的被子舒适温度对于不同填充物被子的适用性不同;舒适低温用于鹅绒和化纤被较合理,可满足人体的睡眠热舒适需求,而对于蚕丝被偏低,受试者感觉偏冷;舒适高温适用于蚕丝被,对于鹅绒和化纤被偏高,受试者感觉偏热。

关键词: 睡袋温标模型, 被子, 被子舒适温度, 睡眠热舒适, 热生理, 被服系统

Abstract:

Objective Quilts, as one of the essential components of the bedding system, play an important role in the sleeping comfort of human beings. With the variations in geographic locations and season alterations, people have to select quilts properly to satisfy the thermal comfort for the sleeping environment. However, limited studies have investigated the quilt applicable temperatures. Sleeping bags have similar functions as quilts and their temperature rating model has been commonly applied in practice. Therefore, this study was carried out to explore the validation of determining comfort temperature for quilts based on the temperature rating model of sleeping bags.
Method Based on the sleeping bag temperature rating model, the method for calculating the lower and upper boundaries of comfortable temperature of quilts was proposed. In order to validate the calculation method, the thermal comfort of 3 types of quilts (i.e., silk, down and polyester) was studied. Each type of quilt involved 4 filling weights. The whole-night sleeping trials were performed by 10 participants to acquire their skin temperatures and subjective thermal perception when using each quilt in its designated temperatures.
Results The result showed that due to different thermal insulating property, different types of quilt had different upper and lower comfortable temperatures, and the difference between the upper and lower comfortable temperatures increased with the increase of filling weights (Fig. 4). Both the mean skin temperatures and distal-proximal skin temperature gradients (DPG) showed significant differences in using different types of quilt (Fig. 5 and Fig. 6). The average mean skin temperatures during 1-8 h in the usage of silk, down and polyester quilts were 34.0, 34.5 and 34.9 ℃ respectively as the lower boundary of the comfortable temperature, and they were 35.1, 35.5 and 35.6 ℃ as the upper boundary of comfortable temperature. The DPG during 1-8 h in the usage of silk, down and polyester quilts were from -1.8 to -0.8 ℃, -1.2 to -0.4 ℃ and -0.9 to -0.1 ℃ respectively for the lower comfortable temperature, and were from -0.8 to -0.2 ℃, -0.4 to 0.3 ℃ and -0.2 to -0.3 ℃ for the upper comfortable temperature. The subjective evaluation results demonstrated high agreement with physiological responses (Fig. 7 and Fig. 8). At the lower comfortable temperatures, most participants felt uncomfortably cool when using the silk quilts but generally comfortable when using down and polyester quilts. While at the upper comfortable temperatures, it was most thermally comfortable when using the silk quilts but uncomfortably warm when using down and polyester quilts. At the lower comfortable temperatures, the proportion of "no change" was the highest (>90%) for polyester quilts followed by down quilts (>50%), as shown in Tab. 3, but most participants preferred "warmer" when using silk quilts. At the upper comfortable temperatures, using silk quilts had the highest thermal satisfaction ("no change" >80%) but over 60% of participants preferred cooler when using polyester and down quilts. The differences in physiological and subjective responses in the usage of different quilts could be attributed to the variation in their water vapor permeability. Compared to the polyester and down quilts, the silk quilts have the highest water vapor transmitting rate, and thus require higher air temperature to maintain thermal comfort.
Conclusion The quilt comfortable temperatures calculated based on the sleeping bag temperature rating model had different applicability for quilts with different fillers. The lower comfortable temperatures were reasonable for down and polyester quilts while they were underestimated for silk quilts. The upper comfortable temperatures were suitable for silk quilts but were overestimated for down and polyester quilts. Thus, it is concluded that the water vapor transmitting index in the sleeping bag temperature rating model should be modified according to the moisture permeability of quilts. Moreover, considering the thermal comfort of different body parts, multi-node human sleeping models would improve the accuracy of determining the quilt comfortable temperatures.

Key words: temperature rating model of sleeping bag, quilt, quilt comfortable temperature, sleeping thermal comfort, thermal physiology, bedding system

中图分类号: 

  • TS941.75

表1

热传递模型参数选择"

指标 产热量
M/(W·m-2)
平均皮肤温度
Tsk/℃
被服系统热阻
Rct/(m2·℃·W-1)
透湿指数
im
舒适低温 43.5 34.4 R c t ( 1 ) 0.52
舒适高温 43.5 35.1 R c t ( 2 ) 0.30

图1

模型计算被子舒适温度与被服系统热阻的关系"

表2

实验被芯参数"

被子
编号
填充物 被服系统热阻/
(m2·℃·W-1)
舒适温度计算值/℃
种类 填充量/g Rct(1) Rct(2) 舒适低温 舒适高温
S1 蚕丝 230 0.44 0.29 18 24
S2 蚕丝 700 0.55 0.34 14 22
S3 蚕丝 1 400 0.63 0.37 11 21
S4 蚕丝 2 000 0.69 0.40 9 20
D1 鹅绒 150 0.49 0.29 16 24
D2 鹅绒 350 0.60 0.34 12 22
D3 鹅绒 750 0.69 0.37 9 21
D4 鹅绒 1 000 0.71 0.40 8 20
P1 化纤 200 0.33 0.23 22 26
P2 化纤 550 0.44 0.26 18 25
P3 化纤 1 400 0.57 0.32 13 23
P4 化纤 2 300 0.63 0.34 11 22

图2

实验流程"

图3

主观热感受评价问卷"

图4

不同填充物和填充量被子的舒适温度"

图5

平均皮肤温度"

图6

远端-近端皮肤温度梯度"

图7

热感觉主观评价结果"

图8

热舒适感主观评价结果"

表3

舒适低温和舒适高温下使用不同被子的热偏好比例"

被子
编号
舒适低温下 舒适高温下
更凉 不变 更暖 更凉 不变 更暖
S1 0 20 80 10 90 0
S2 0 0 100 20 80 0
S3 0 10 90 10 90 0
S4 0 10 90 10 90 0
D1 0 60 40 60 40 0
D2 0 50 50 60 40 0
D3 0 70 30 60 40 0
D4 0 60 40 70 30 0
P1 0 100 0 80 20 0
P2 0 90 10 80 20 0
P3 0 100 0 100 0 0
P4 0 100 0 90 10 0
[1] MORRISSEY M J, DUNTLEY S P, ANCH A M, et al. Active sleep and its role in the prevention of apoptosis in the developing brain[J]. Medical Hypotheses, 2004, 62(6): 876-879.
pmid: 15142640
[2] CAUTER E V, SPIEGEL K, TASALI E, et al. Metabolic consequences of sleep and sleep loss[J]. Sleep Medicine, 2008, 9(S1): 23-28.
[3] OPP M R. Sleeping to fuel the immune system: mammalian sleep and resistance to parasites[J]. BMC Evolutionary Biology, 2009. DOI:10.1186/1471-2148-9-8.
doi: 10.1186/1471-2148-9-8
[4] ELLIS S K, WALCZYK J J, BUBOLTZ W, et al. The relationship between self-reported sleep quality and reading comprehension skills[J]. Sleep Science, 2014, 7(4): 189-196.
doi: 10.1016/j.slsci.2014.12.001 pmid: 26483928
[5] PEROGAMVROS L, SCHWARTZ S. The roles of the reward system in sleep and dreaming[J]. Neurosci Biobehav Rev, 2012, 36(8): 1934-1951.
doi: 10.1016/j.neubiorev.2012.05.010 pmid: 22669078
[6] OKAMOTO-MIZUNO K, MIZUNO K. Effects of thermal environment on sleep and circadian rhythm[J]. Journal of Physiological Anthropology, 2012. DOI:10.1186/1880-6805-31-14.
doi: 10.1186/1880-6805-31-14
[7] LAN L, PAN L, LIAN Z, et al. Experimental study on thermal comfort of sleeping people at different air temperatures[J]. Building and Environment, 2014, 73: 24-31.
doi: 10.1016/j.buildenv.2013.11.024
[8] LIU Y, SONG C, WANG Y, et al. Experimental study and evaluation of the thermal environment for sleeping[J]. Building and Environment, 2014, 82: 546-555.
doi: 10.1016/j.buildenv.2014.09.024
[9] WANG Y, LIU Y, SONG C, et al. Appropriate indoor operative temperature and bedding micro climate temperature that satisfies the requirements of sleep thermal comfort[J]. Building and Environment, 2015, 92: 20-29.
doi: 10.1016/j.buildenv.2015.04.015
[10] KIM M, CHUN C, HAN J. A study on bedroom environment and sleep quality in Korea[J]. Indoor and Built Environment, 2010, 19(1): 123-128.
doi: 10.1177/1420326X09358031
[11] 刘玉萍, 卢业虎, 王来力. 被服系统热舒适性研究进展[J]. 纺织学报, 2020, 41(1): 190-196.
LIU Yuping, LU Yehu, WANG Laili. Research progress on thermal comfort of bedding system[J]. Journal of Textile Research, 2020, 41(1): 190-196.
[12] HARDING E C, FRANKS N P, WISDEN W. The temperature dependence of sleep[J]. Frontiers in Neuroscience, 2019. DOI:10.3389/fnins.2019.00336.
doi: 10.3389/fnins.2019.00336
[13] HE M, LIAN Z, CHEN P. Evaluation on the performance of quilts based on young people's sleep quality and thermal comfort in winter[J]. Energy and Buildings, 2019, 183: 174-183.
doi: 10.1016/j.enbuild.2018.10.040
[14] ZHANG N, CAO B, WANG Z, et al. Effects of bedding insulation and indoor temperature on bed microclimate and thermal comfort[J]. Energy and Buildings, 2020. DOI:10.1016/j.enbuild.2020.110097.
doi: 10.1016/j.enbuild.2020.110097
[15] 刘玉萍. 被服系统舒适温标的建立及影响因素分析[D]. 苏州: 苏州大学, 2020: 30-37.
LIU Yuping. The development of comfort temperature for bedding system and analysis of influencing factors[D]. Suzhou: Soochow University, 2020: 30-37.
[16] PAN L, LIAN Z, LAN L. Investigation of sleep quality under different temperatures based on subjective and physiological measurements[J]. HVAC&R Research, 2012, 18(5): 1030-1043.
[17] LU Y, NIU M, SONG W, et al. Investigation on the total and local thermal insulation of the bedding system: effects of filling materials, weights and body postures[J]. Building and Environment, 2021. DOI:10.1016/j.buildenv.2021.108161.
doi: 10.1016/j.buildenv.2021.108161
[18] LIN Z, DENG S. A study on the thermal comfort in sleeping environments in the subtropics: measuring the total insulation values for the bedding systems commonly used in the subtropics[J]. Building and Environment, 2008, 43(5): 905-916.
doi: 10.1016/j.buildenv.2007.01.027
[19] BUYSSE D J, REYNOLDS C F, MONK T H, et al. The pittsburgh sleep quality index: a new instrument for psychiatric practice and research[J]. Psychiatry Research, 1989, 28(2): 193-213.
doi: 10.1016/0165-1781(89)90047-4 pmid: 2748771
[20] HARDY J D, DUBOIS E F. The technic measuring radiation and convection[J]. The Journal of Nutrition, 1937, 15(5): 461-475.
doi: 10.1093/jn/15.5.461
[21] KRÄUCHI K, CAJOCHEN C, WERTH E, et al. Warm feet promote the rapid onset of sleep[J]. Nature, 1999, 401: 36-37.
doi: 10.1038/43366
[22] GAGGE A P, NISHI Y. Heat exchange between human skin surface and thermal environment[M]//TERJUNG R. Comprehensive Physiology. Bethesda: American Physiological Society, 1977: 69-92.
[23] XU X, ZHU J, CHEN C, et al. Application potential of skin temperature for sleep-wake classification[J]. Energy and Buildings, 2022. DOI: 10.1016/j.enbuild.2022.112137.
doi: 10.1016/j.enbuild.2022.112137
[24] NAYLOR G R S, WILSON C A, LAING R M. Thermal and water vapor transport properties of selected lofty nonwoven products[J]. Textile Research Journal, 2016, 87(12): 1413-1424.
doi: 10.1177/0040517516654104
[25] LAN L, ZHAI Z, LIAN Z. A two-part model for evaluation of thermal neutrality for sleeping people[J]. Building and Environment, 2018, 132: 319-326.
doi: 10.1016/j.buildenv.2018.02.004
[26] CAO T, LIAN Z, MA S, et al. Thermal comfort and sleep quality under temperature, relative humidity and illuminance in sleep environment[J]. Journal of Building Engineering, 2021. DOI: 10.1016/j.jobe.2021.102575.
doi: 10.1016/j.jobe.2021.102575
[1] 王诗潭, 江舒, 王云仪. 内穿服装对消防员热生理和心理反应的影响[J]. 纺织学报, 2023, 44(01): 164-170.
[2] 马亮, 李俊. 多种智能技术在防寒服装功能研发中的应用进展[J]. 纺织学报, 2022, 43(06): 206-214.
[3] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[4] 刘玉萍, 卢业虎, 王来力. 被服系统热舒适性研究进展[J]. 纺织学报, 2020, 41(01): 190-196.
[5] 柯莹 李俊 Havenith George. 服装通风研究现状及进展[J]. 纺织学报, 2015, 36(11): 164-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 林红;陈宇岳;任煜;仲志锋;王红卫. 经等离子体处理的蚕丝纤维结构与性能[J]. 纺织学报, 2004, 25(03): 9 -10 .
[7] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[8] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[9] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .
[10] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .