纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 142-150.doi: 10.13475/j.fzxb.20220804501

• 染整与化学品 • 上一篇    下一篇

中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽性能

郑贤宏1,2,3, 唐金好2, 李长龙2(), 王炜1,3   

  1. 1.东华大学 化学与化工学院, 上海 201620
    2.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    3.三元控股集团有限公司, 浙江 杭州 311200
  • 收稿日期:2022-08-16 修回日期:2022-12-14 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 李长龙(1968—),男,教授,硕士。主要研究方向为功能纺织品。E-mail:licl@ahpu.edu.cn
  • 作者简介:郑贤宏(1990—),男,副教授,博士。主要研究方向为智能可穿戴器件。
  • 基金资助:
    国家自然科学基金项目(52303051);安徽省教育厅重大项目(2022AH040137);安徽省自然科学基金项目(2308085ME146);安徽省自然科学基金项目(2008085QE213)

Preparation and electromagnetic shielding performance of hollow magnetic Fe3O4 nanosphere/MXene composite cotton fabrics

ZHENG Xianhong1,2,3, TANG Jinhao2, LI Changlong2(), WANG Wei1,3   

  1. 1. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    2. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    3. Saintyear Holding Group Co., Ltd., Hangzhou, Zhejiang 311200, China
  • Received:2022-08-16 Revised:2022-12-14 Published:2023-11-15 Online:2023-12-25

摘要:

为优化导电织物对电磁波的阻抗匹配性,减少电磁波的二次污染,在棉织物中引入磁损耗材料中空Fe3O4纳米球,并通过层层组装的方法将其与过渡金属碳化物/氮化物(MXene)结合制备中空磁性Fe3O4纳米球/MXene复合棉织物,探究中空磁性Fe3O4纳米球对复合棉织物电磁屏蔽性能的影响规律和作用机制。借助超景深显微镜、扫描电子显微镜和矢量网络分析仪对中空磁性Fe3O4纳米球/MXene复合棉织物的形貌结构和电磁屏蔽性能进行表征与分析。结果表明:通过水热合成制备的Fe3O4具有中空球状形貌和尖晶石晶体结构,颗粒尺寸较为均匀,为(271.9 ± 4.6) nm;随着Fe3O4/MXene负载循环次数的增加,复合棉织物的方阻逐渐减小,最低为(10.5±1.7) Ω/□,并展现出较好的透气性;复合棉织物的电磁屏蔽性能也逐渐增强,最高电磁屏蔽效能可达(29.03±0.3)dB,且织物的屏蔽机制由吸收为主逐渐向反射为主转变,其优异的电磁屏蔽性能主要归因于MXene纳米片和中空磁性Fe3O4纳米球的协同作用。

关键词: 过渡金属碳化物/氮化物, Fe3O4纳米球, 复合棉织物, 层层组装, 电磁屏蔽, 屏蔽机制

Abstract:

Objective Lightweight, flexible, air permeable and high-performance electromagnetic interference (EMI) shielding materials are urgently required to solve the increasingly serious electromagnetic radiation pollution. Transition metal carbides/nitrides (MXenes) have attracted much attention in the area of EMI shielding because of their high metallic electrical conductivity. However, the MXene modified fabrics usually exhibited reflection-dominant EMI shielding mechanism because of the impedance mismatch. Therefore, it is still a critical challenge to fabricate high-performance MXene-based EMI shielding fabrics with tunable EMI shielding performance and mechanism.

Method Constructing multilayer heterogeneous structure of hollow magnetic Fe3O4 nanospheres (HFOs)/MXene is an efficient approach to improve and tune the EMI shielding performance of the composite fabrics, because the HFOs and MXene can absorb the electromagnetic waves by means of the magnetic loss and conductive loss, respectively. More importantly, the electromagnetic waves will be attenuated in the multilayer heterogeneous structure due to the multiple reflections. However, the paper proposed relatively few studies devote to studying the EMI shielding performance of HFOs/MXene modified fabrics. Herein, the paper proposed a layer-by-layer assembly strategy to construct multilayer heterogeneous structure of hollow magnetic Fe3O4 nanospheres/MXene on the cotton woven fabrics to fabricate high-performance EMI shielding fabrics.

Results HFOs were prepared by hydrothermal method, which exhibited the hollow morphology (with a diameter of (271.9±4.6) nm) with the inverse spinel structure (Fig. 2). Fe3O4/MXene modified fabrics were fabricated by the layer-by-layer assembly. The cotton fabrics were firstly deposited with MXene nanosheets by the spray-coating method. The HFOs were positively charged by using the cetyltrimethylammonium bromide (CTAB), which were deposited on the MXene modified fabrics by the electrostatic attraction to fabricate the HFOs/MXene composite fabrics. The layer-by-layer assembly was repeated for 11 cycles to increase the loading of active materials. The HFOs and MXene were uniformly deposited on the fabrics and exhibited MXene-dominant structure (Fig. 4 and Fig. 5), which facilitated constructing complete electrically conductive networks in the composite fabrics. The sheet resistance of the composite fabric was decreased from (5 800±85) Ω/□ to (10.5±1.7) Ω/□ when the assembling cycle increased from 1 to 11 (Fig. 8), which was attributed to the increased MXene loading and the corresponding completed electrically conductive networks. In addition, the composite fabric demonstrated good air permeability (Fig. 9). The HFOs/MXene composite cotton fabrics also demonstrated good EMI shielding performances. The EMI shielding performance of the fabric was improved with the assembling cycles, and the maximum EMI shielding effectiveness was up to (29.03±0.3) dB (Fig. 10 and Fig. 11). The absorption EMI shielding effectiveness was higher than reflection EMI shielding effectiveness for all the composite fabrics. More importantly, the EMI shielding mechanism was tunable for the composite fabrics, and the EMI shielding mechanism changed from absorption-dominant to reflection-dominant when the HFOs/MXene assembling cycles was more than 5 (Fig. 12). The tunable EMI shielding mechanism of the HFOs/MXene composite cotton fabrics may be attributed to the transition from the impedance match to impedance mismatch.

Conclusion The good EMI shielding performance of the HFOs/MXene composite fabric is attributed to the synergistic effects between hollow magnetic Fe3O4 nanospheres and MXene, and the multilayer heterogeneous structure, including the conductive loss from MXene nanosheets, magnetic loss of HFOs and inner multiple reflection from the multilayer heterogeneous structure. The high electrical conductivity and good EMI shielding performance of HFOs/MXene composite cotton fabric makes is attractive in the application of flexible electromagnetic protection, wearable heater, and sensors.

Key words: transition metal carbides/nitride, Fe3O4 nanosphere, composite cotton fabric, layer-by-layer assembly, electromagnetic interference shielding, shielding mechanism

中图分类号: 

  • TS195.5

图1

中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽示意图"

图2

中空磁性Fe3O4纳米球结晶结构和微观结构"

图3

棉织物的超景深3D显微镜照片"

图4

棉织物的SEM照片"

图5

MF11织物EDS照片"

图6

MF11 织物的EDS能谱图"

图7

复合棉织物的XRD图"

图8

复合棉织物的方阻"

图9

棉织物透气性和耐水洗牢度"

图10

中空磁性Fe3O4纳米球/MXene复合棉织物电磁屏蔽效能与频率的关系"

图11

复合棉织物的总屏蔽效能及吸收和反射屏蔽效能"

图12

复合棉织物反射与吸收和透射屏蔽系数"

图13

中空磁性Fe3O4纳米球/MXene复合棉织物电磁屏蔽机制"

[1] 邹梨花, 杨莉, 兰春桃, 等. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12):111-118.
ZOU Lihua, YANG Li, LAN Chuntao, et al. Electromagnetic shielding properties of graphene oxide /polypyrrole coated cotton fabric with layer-by-layer assembling method[J]. Journal of Textile Research, 2021, 42(12):111-118.
[2] 王秋萍, 张瑞萍, 李成红, 等. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10):116-121.
WANG Qiuping, ZHANG Ruiping, LI Chenghong, et al. Preparation and characterization of conductive polyester nonwovens[J]. Journal of Textile Research, 2020, 41(10):116-121.
[3] MAITY S, CHATTERJEE A. Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: a review[J]. Journal of Industrial Textiles, 2018, 47(8): 2228-2252.
doi: 10.1177/1528083716670310
[4] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(8):107-112.
YANG Honglin, XIANG Wei, DONG Shuxiu. Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites[J]. Journal of Textile Research, 2022, 43(8):107-112.
[5] ZOU L H, LAN C T, YANG L, et al. The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding[J]. Diamond and Related Materials, 2020. DOI: 10.1016/j.diamond.2020.107757.
[6] WANG X F, LEI Z W, MA X D, et al. A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.132605.
[7] ZHENG X H, SHEN J K, HU Q L, et al. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics[J]. Nanoscale, 2021, 13(3): 1832-1841.
doi: 10.1039/d0nr07433k pmid: 33434252
[8] LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201905197.
[9] LIU X Y, JIN X X, LI L, et al. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion perform-ance[J]. Journal of Materials Chemistry A, 2020, 8(25): 12526-12537.
doi: 10.1039/D0TA03048A
[10] WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating perform-ances[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201806819.
[11] SU L, MA J X, ZHANG F Z, et al. Achieving effective broadband microwave absorption with Fe3O4@C supraparticles[J]. Journal of Materiomics, 2021, 7(1): 80-88.
doi: 10.1016/j.jmat.2020.07.011
[12] DENG B W, LIU Z C, PAN F, et al. Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching[J]. Journal of Materials Chemistry A, 2021, 9(6): 3500-3510.
doi: 10.1039/D0TA10551A
[13] SHI Y N, GAO X H, QIU J. Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam[J]. Ceramics International, 2019, 45(3): 3126-3132.
doi: 10.1016/j.ceramint.2018.10.212
[14] SHATERI Khalil-abad M, YAZDANSHENAS M E, NATEGHI M R. Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity[J]. Cellulose, 2009, 16(6): 1147-1157.
doi: 10.1007/s10570-009-9351-8
[15] WANG C X, REN Y, LV J C, et al. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction[J]. Applied Surface Science, 2017, 396: 1840-1848.
doi: 10.1016/j.apsusc.2016.11.173
[16] ZHENG X H, HU Q L, WANG Z Q, et al. Roll-to-roll layer-by-layer assembly bark-shaped carbon nanotube/Ti3C2Tx MXene textiles for wearable electronics[J]. Journal of Colloid and Interface Science, 2021, 602: 680-688.
doi: 10.1016/j.jcis.2021.06.043
[17] RAAGULAN K, GHIM J S, BRAVEENTH R, et al. EMI shielding of the hydrophobic, flexible, lightweight carbonless nano-plate composites[J]. Nanomaterials, 2020. DOI: 10.3390/nano10102086.
[18] FAN Z W, LIU R T, CHENG X J. Nonwoven composite endowed with electromagnetic shielding performance by graphene nanosheets adherence[J]. Journal of The Textile Institute, 2022, 113(7): 1411-1417.
doi: 10.1080/00405000.2021.1929707
[19] GHOSH S, GANGUULY S, DAS P, et al. Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application[J]. Fibers and Polymers, 2019, 20(6): 1161-1171.
doi: 10.1007/s12221-019-1001-7
[20] LAN C T, LI C L, HU J Y, et al. High-loading carbon nanotube/polymer nanocomposite fabric coatings obtained by capillarity-assisted "excess assembly" for electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2018. DOI: 10.1002/admi.201800116.
[21] ZOU L H, SHEN J H, XU Z Z, et al. Electromagnetic wave absorbing properties of cotton fabric with carbon nanotubes coating[J]. Fibres & Textiles in Eastern Europe, 2020, 28(5): 82-90.
[22] XIE C L, WANG Y, YIN G, et al. Carbon nanotubes chemical bonding with cotton/spandex blended fabric via thiol-epoxy click chemistry for durable electromagnetic interference shielding[J]. Progress in Organic Coatings, 2021. DOI: 10.1016/j.porgcoat.2021.106473.
[23] MUTHUKUMAR N, THILAGAVATHI G, KANNAIAN T. Polyaniline-coated nylon lycra fabrics for strain sensor and electromagnetic interference shielding applic-ations[J]. High Performance Polymers, 2015, 27(1): 105-111.
doi: 10.1177/0954008314540313
[24] PAN T, ZHANG Y, WANG C H, et al. Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability[J]. Composites Science and Technology, 2020. DOI: 10.1016/j.compscitech.2020.107991.
[25] JOSEPH N, VARGHESE J, SEBASTIAN M T. In situ polymerized polyaniline nanofiber-based functional cotton and nylon fabrics as millimeter-wave absorbers[J]. Polymer Journal, 2017, 49(4): 391-399.
doi: 10.1038/pj.2016.121
[26] CRESPO M, GONZALEZ M, ELIAS L, et al. Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range[J]. Physica Status Solidi-Rapid Research Letters, 2014, 8(8):698-704.
doi: 10.1002/pssr.201409151
[27] CHEN Z P, XU C, MA C Q, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2013, 25(9):1296-1300.
doi: 10.1002/adma.v25.9
[1] 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117.
[2] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[3] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[4] 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16.
[5] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
[6] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[7] 邹梨花, 徐珍珍, 孙妍妍, 王太冉, 邱夷平. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-116.
[8] 缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(02): 100-104.
[9] 王利君 毛鹏丽. 防电磁辐射聚吡咯/ 棉织物的制备及其性能[J]. 纺织学报, 2018, 39(09): 95-101.
[10] 高党鸽 李亚娟 吕斌 马建中. 纳米银制备及其在纺织品中的应用研究进展[J]. 纺织学报, 2018, 39(08): 171-178.
[11] 曲华洋 谢春萍 徐伯俊 刘新金. 全聚赛络纺双芯纱及其弹性电磁屏蔽针织物的制备[J]. 纺织学报, 2018, 39(06): 52-57.
[12] 梁然然 肖红 王妮. 双层及多层电磁屏蔽织物的屏蔽效能[J]. 纺织学报, 2017, 38(09): 51-58.
[13] 苏钦城 赵晓明 李卫斌 李建雄. 基于有限积分法的机织物电磁屏蔽效能仿真分析[J]. 纺织学报, 2016, 37(2): 155-160.
[14] 梁然然 肖红 王妮. 电磁屏蔽织物屏蔽效能理论计算的研究进展[J]. 纺织学报, 2016, 37(2): 161-169.
[15] 黄帅 张毅 周志华. 采用因子分析法的服用织物电磁屏蔽性能影响因素分析[J]. 纺织学报, 2016, 37(2): 149-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!