纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 159-167.doi: 10.13475/j.fzxb.20220805509

• 染整与化学品 • 上一篇    下一篇

光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能

柳浩1, 马万彬1, 栾一鸣1, 周岚1,2, 邵建中1, 刘国金1()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
  • 收稿日期:2022-08-16 修回日期:2022-11-04 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 刘国金(1990— ),男,副教授,博士。主要研究方向为纺织品结构生色。E-mail:guojin900618@163.com。
  • 作者简介:柳浩(1997— ),男,硕士生。主要研究方向为纺织品结构生色、纺织品后整理。
  • 基金资助:
    国家自然科学基金项目(52003242);国家重点研发计划政府间国际科技创新合作重点专项(2022YFE0125900)

Preparation and properties of structural colored carbon fiber/polyester blended yarns based on photonic crystals

LIU Hao1, MA Wanbin1, LUAN Yiming1, ZHOU Lan1,2, SHAO Jianzhong1, LIU Guojin1()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
  • Received:2022-08-16 Revised:2022-11-04 Published:2023-02-15 Online:2023-03-07

摘要:

针对碳纤维难着色的问题,提出利用结构生色实现碳纤维/涤纶混纺纱线的着色。以聚(苯乙烯-甲基丙烯酸)胶体微球为结构基元,利用浸渍提拉法在碳纤维/涤纶混纺纱线上构筑光子晶体生色结构。分析组装液质量分数和自组装温度对结构色的影响,探究胶体微球在纱线表面组装成光子晶体的过程,利用聚二甲基硅氧烷(PDMS) 封装技术提升结构生色纱线的色彩耐久性。结果表明:当组装液质量分数为70%、自组装温度为40 ℃时,可以在纱线表面构筑得到结构色明亮的光子晶体;胶体微球在纱线表面的组装过程归纳为预备阶段、堆砌聚集和完备阶段;经PDMS封装后的结构生色纱线经历水洗摩擦后依旧保持原有的色彩鲜艳度。该研究可为实现彩色碳纤维制品的现代化生产和应用提供新的策略。

关键词: 碳纤维, 结构生色, 光子晶体, 聚(苯乙烯-甲基丙烯酸), 胶体微球, 自组装, 涤纶, 混纺纱线

Abstract:

Objective Carbon fiber is widely used in aerospace, infrastructure, military equipment, sports and other fields due to its excellent physical and chemical properties. However, the color of carbon fiber is much too limited to meet the needs of various possible applications. At present, the colored carbon fiber is obtained by modifying its surface and then coloring it with chemical colorants. Although colored carbon fiber can be prepared by this method, the excellent properties of carbon fiber are negatively affected to a certain extent because of the surface modification before coloration. New technologies suitable for coloring carbon fiber are needed.
Method The coloring of carbon fiber was achieved through structural coloration. In this study, monodispersed poly(styrene-methacrylic acid) (P(St-MAA)) colloidal microspheres were prepared by soap-free emulsion polymerization, and were then used as building blocks to construct photonic crystal colored structures on carbon fiber/polyester blended yarns by a dip-coating method.
Results When the mass fraction of P(St-MAA) colloidal microspheres assembly solution was 70% and the self-assembly temperature was 40 ℃, brighter structural colors can be fabricated on the surface of carbon fiber(Fig. 3 and Fig. 6). It is seen that the process of self-assembly of P(St-MAA) colloidal microspheres on the yarn surface to form photonic crystals can be briefly categorized into preparatory stage, stacking aggregation stage and completion stage, and the corresponding structural color is formed with a series of color shifts(Fig.8-10). The colors presented by the yarn of the structural colored carbon fiber/polyester blended yarn varied with different observation angles, exhibiting a significant iridescent effect(Fig.11). The polydimethylsiloxane(PDMS)-encapsulated structural colored carbon fiber/polyester blended yarn can still maintain the original structural colors after washing and rubbing tests, indicating its outstanding color durability, as indicated in Fig.13-14.
Conclusion In this work, the photonic crystals composed of monodispersed P(St-MAA) colloidal microspheres were constructed via a dip-coating method to achieve structural coloration of carbon fiber. The mass fraction of P(St-MAA) colloidal microspheres solution-applied to fabricate photonic crystals on the carbon fiber was investigated and optimized at 70%. The effect of self-assembly temperature of carbon fiber on structural color effect was analyzed, and the research indicated that the self-assembly temperature had little effect on structural color. The process of self-assembly of P(St-MAA) colloidal microspheres on the yarn surface to form photonic crystals can be briefly categorized into preparatory stage, stacking and aggregation stage, and completion stage. Moreover, the structural colored carbon fiber/polyester blended yarn was encapsulated with PDMS to ensure the durability of structural colors. It was confirmed that the yarn color was still bright after multiple washing and rubbing tests, indicating the encapsulation of PDMS could effectively improve the stability of photonic crystals. The perfect combination of dip-coating method, carbon fiber and structural coloration is able to meet people's diversified demands for carbon fiber fashion and promote the industrial production of colorful carbon fiber materials.

Key words: carbon fiber, structural coloration, photonic crystal, poly(styrene-methacrylic acid), colloidal microsphere, self-assembly, polyester, blended yarn

中图分类号: 

  • TS101

图1

P(St-MAA)胶体微球组装液的制备流程图"

图2

结构生色碳纤维/涤纶混纺纱线的制备流程图"

图3

不同质量分数组装液自组装前后碳纤维/涤纶混纺纱线的三维视频显微镜照片和反射率等高图"

图4

不同质量分数组装液自组装后碳纤维/涤纶混纺纱线扫描电镜照片"

图5

不同质量分数组装液自组装后碳纤维/涤纶混纺纱线的示意图"

图6

不同自组装温度下混纺纱线的三维视频显微镜照片"

图7

不同自组装温度下混纺纱线的反射率峰值"

图8

不同时间的结构生色纱线的三维视频显微镜照片"

图9

不同阶段P(St-MAA)胶体微球在纱线表面排列的扫描电镜照片"

图10

P(St-MAA)胶体微球在纱线上的组装过程示意图"

图11

P(St-MAA)光子晶体结构生色纱线的虹彩效应图片及反射率等高图 注:45asXX 表示光源角度为45°,对应的观察角度为XX°, 其它依此类推。"

图12

PDMS封装前后常规透明玻璃片和结构生色纱线的反射率曲线"

图13

PDMS封装前后的结构生色碳纤维/涤纶混纺纱线耐水洗测试结果"

图14

PDMS封装前后的结构生色碳纤维/涤纶混纺纱线的耐摩擦测试结果"

图15

基于结构生色碳纤维/涤纶混纺纱线的织物编织过程"

[1] 曹忠亮, 郭登科, 林国军, 等. 碳纤维复合材料自动铺放关键技术的现状与发展趋势[J]. 材料导报, 2021, 35(21): 21185-21194.
CAO Zhongliang, GUO Dengke, LIN Guojun, et al. Current situation and development trend of key technologies for automated placement of carbon fiber composites[J]. Material Reports, 2021, 35(21): 21185-21194.
[2] PARKER A R. 515 million years of structural colour[J]. Journal of Optics A: Pure and Applied Optics, 2000, 2(6): 15-28.
[3] AGUIRRE C I, REGUERA E, STEIN A. Colloidal photonic crystal pigments with low angle depen-dence[J]. ACS Appl Mater Interfaces, 2010, 2(11): 3257-3262.
doi: 10.1021/am100704f
[4] DIAO Y Y, LIU X Y. Controlled colloidal assembly: experimental modeling of general crystallization and biomimicking of structural color[J]. Advanced Functional Materials, 2012, 22(7): 1354-1375.
doi: 10.1002/adfm.v22.7
[5] MCPHEDRAN R C, NICOROVICI N A, MCKENZIE D R, et al. Structural colours through photonic crystals[J]. Physica B: Condensed Matter, 2003, 338(1-4): 182-185.
doi: 10.1016/S0921-4526(03)00483-6
[6] SATO O, KUBO S, GU Z Z. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands[J]. Accounts of Chemical Research, 2009, 42(1): 1-10.
doi: 10.1021/ar700197v pmid: 18837520
[7] CULLEN D K, XU Y, RENEER D V, et al. Color changing photonic crystals detect blast exposure[J]. Neuroimage, 2011, 54(S1): 37-44.
[8] ZHANG J, SUN Z, YANG B. Self-assembly of photonic crystals from polymer colloids[J]. Current Opinion in Colloid & Interface Science, 2009, 14(2): 103-114.
doi: 10.1016/j.cocis.2008.09.001
[9] GONZALEZ-URBINA L, BAERT K, KOLARIC B, et al. Linear and nonlinear optical properties of colloidal photonic crystals[J]. Chem Rev, 2012, 112(4): 2268-2285.
doi: 10.1021/cr200063f
[10] 柳浩, 赵嘉欣, 张耘箫, 等. 基于金属有机框架的光子晶体制备与应用研究进展[J]. 复合材料学报, 2021, 38(10): 3162-3170.
LIU Hao, ZHAO Jiaxin, ZHANG Yunxiao, et al. Research progress in the preparation and application of photonic crystals based on metal-organic framework[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3162-3170.
[11] 王晓辉, 刘国金, 邵建中. 纺织品仿生结构生色[J]. 纺织学报, 2021, 42(12): 1-14.
WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles[J]. Journal of Textile Research, 2021, 42(12): 1-14.
doi: 10.1177/004051757204200101
[12] 裴广晨, 王京霞, 江雷. 仿生光子晶体纤维的研究进展[J]. 化学学报, 2021, 79(4): 414-429.
doi: 10.6023/A20120556
PEI Guangchen, WANG Jingxia, JIANG Lei. Research progress of bioinspired photonic crystal fibers[J]. Acta Chimica Sinica, 2021, 79(4): 414-429.
doi: 10.6023/A20120556
[13] ZHOU N, ZHANG A, SHI L, et al. Fabrication of structurally-colored fibers with axial core-shell structure via electrophoretic deposition and their optical proper-ties[J]. ACS Macro Letters, 2013, 2(2): 116-120.
doi: 10.1021/mz300517n
[14] CHEN F, YANG H, LI K, et al. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability[J]. ACS Nano, 2017, 11(10): 10330-10336.
doi: 10.1021/acsnano.7b05139 pmid: 28933813
[1] 肖明, 黄亮, 罗龙永, 毕曙光, 冉建华. 羧基化聚苯乙烯荧光微球的合成及其在织物防伪中的应用[J]. 纺织学报, 2023, 44(02): 184-190.
[2] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[3] 李月佳, 高伟洪, 杨树, 林田田, 朱婕, 赵小燕, 张之悦. 全光谱SiO2结构色薄膜的加色法制备及其光学性能[J]. 纺织学报, 2023, 44(02): 168-175.
[4] 蔡洁, 王亮, 傅宏俊, 钟智丽. 玻璃纤维/碳纤维织物基复合材料的电磁屏蔽性能[J]. 纺织学报, 2023, 44(02): 111-117.
[5] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[6] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[7] 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148.
[8] 高益平, 李义臣, 王晓辉, 刘国金, 周岚, 邵敏, 邵建中. 基于液态光子晶体固定化的柔性结构生色膜制备及其性能[J]. 纺织学报, 2022, 43(12): 1-7.
[9] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[10] 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
[11] 苏子越, 单颖法, 巫莹柱, 秦介垚, 彭美婷, 王晓梅, 黄美林. 碳纤维织物基形状记忆复合材料的制备及其性能[J]. 纺织学报, 2022, 43(11): 75-80.
[12] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[13] 方周倩, 苗沛源, 金肖克, 祝成炎, 田伟. 碳纤维复合材料孔洞损伤超声波C扫描无损检测[J]. 纺织学报, 2022, 43(10): 71-76.
[14] 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136.
[15] 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[5] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[6] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[7] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[10] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .