纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 63-68.doi: 10.13475/j.fzxb.20220806106

• 纤维材料 • 上一篇    下一篇

聚乙二醇改性热塑性环氧树脂及其可纺性

胡宝继, 张巧玲, 王旭()   

  1. 河南工程学院 服装学院, 河南 郑州 451191
  • 收稿日期:2022-08-16 修回日期:2022-11-20 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 王旭(1981—),女,副教授,博士。主要研究方向为服装舒适性和人体工学。E-mail:wangxu0086@126.com。
  • 基金资助:
    河南省科技攻关计划项目(172102310549)

Polyethylene glycol modified thermoplastic epoxy resin and its spinnability

HU Baoji, ZHANG Qiaoling, WANG Xu()   

  1. School of Fashion, Henan University of Engineering, Zhengzhou, Henan 451191, China
  • Received:2022-08-16 Revised:2022-11-20 Published:2023-02-15 Online:2023-03-07

摘要:

为拓宽热塑性环氧树脂在纺织材料领域的应用,以聚合-热压工艺制备了热塑性环氧树脂膜,进一步利用熔融分散工艺将聚乙二醇(PEG)分散至热塑性环氧树脂中制备环氧树脂/PEG粒料,并通过熔融-牵伸工艺制备环氧树脂/PEG长丝。探讨了环氧树脂/PEG的可纺性,分析了环氧树脂膜和环氧树脂/PEG长丝的力学与动态力学性能。结果表明:所制备的环氧树脂膜屈服应力为64.6 MPa,玻璃化转变温度可达100.2 ℃;PEG的加入使环氧树脂/PEG粒料的挤出力显著降低,当PEG质量分数为5%时,相比于纯环氧树脂挤出力降低了870 N;PEG对热塑性环氧树脂的纺丝温度具有调控作用,当PEG质量分数为7.5%时,相比于纯环氧树脂粒料,环氧树脂/PEG粒料的纺丝温度降低了30 ℃;经PEG改性后的环氧树脂长丝具有更小的直径和更优异的力学性能,相比于纯环氧树脂长丝,PEG质量分数为7.5%的环氧树脂/PEG长丝直径降低了50 μm,PEG质量分数为2.5%的环氧树脂/PEG长丝的断裂应变与断裂应力分别增加了60%和20 MPa。

关键词: 环氧树脂, 聚乙二醇, 热塑性, 可纺性, 熔融分散, 熔融-牵伸工艺, 环氧树脂长丝

Abstract:

Objective Thermoplastic epoxy resin has excellent mechanical properties and can be melted and reprocessed, but its melting processing temperature is relatively high which needs to be reduced. In order to develop thermoplastic epoxy resin as textile material and to reveal its potential application in the engineering field, on the basis of studying its mechanical and thermodynamic properties, the spinning temperature of thermoplastic epoxy resin needs to be regulated by melting dispersion polyethylene glycol (PEG).
Method Thermoplastic epoxy resin film was prepared by polymerizing-hot pressing process. The pellets of thermoplastic epoxy resin/PEG were further developed by the process of PEG melt-dispersion, and the epoxy resin/PEG filament was prepared by the process of melt-drawing. The mechanical and thermodynamic properties of thermoplastic epoxy resin film were analyzed. The influence of PEG on the spinnability of thermoplastic epoxy resin was discussed, and the mechanical and thermodynamic properties of PEG modified epoxy resin/PEG filament were analyzed.
Results The yield stress of the thermoplastic epoxy resin film is found to reach 64.6 MPa and the breaking strain 117.4%. The storage modulus of thermoplastic epoxy resin film at 25 ℃ is found as high as 2 296 MPa, and the glass transition temperatures 100.2 ℃. PEG significantly reduces the extrusion force of epoxy resin/PEG pellets. Compared with pure epoxy resin pellets, the extrusion force of epoxy resin/PEG pellets with 5% PEG content is reduced by 870 N at 300 ℃. The spinning temperature of pure thermoplastic epoxy resin pellets is as high as 300 ℃, and the extrusion force is about 1.92 kN at this spinning temperature. With the increase of PEG content, the extrusion force of epoxy resin/PEG pellets can reach about 1.9 kN during the spinning of pure epoxy resin pellets at lower temperature. Epoxy resin/PEG pellets with different PEG content can be spun into epoxy resin/PEG filament by melt-drawing process at the mixing temperature of 290 ℃ (PEG content: 2.5%), 280 ℃ (PEG content: 5%) and 270 ℃ (PEG content: 7.5%), respectively. Compared with pure epoxy resin pellets, the spinning temperature of epoxy resin/PEG pellets with 7.5% PEG content decreased by 30 ℃. PEG also improves the drawing effect of thermoplastic epoxy resin in spinning. In terms of diameter, the diameter of the epoxy resin/PEG filament with 7.5% PEG content is 50 μm lower than that of the pure epoxy resin filament. Compared with pure epoxy resin filament, the mechanical properties of thermoplastic epoxy resin/PEG filament are significantly improved; the breaking strain and breaking stress of the epoxy resin/PEG filament with 2.5% PEG content were increased by 60% and 20 MPa, respectively. PEG reduces the glass transition temperature of epoxy resin/PEG filament. Compared with pure epoxy resin filament, the glass transition temperature of epoxy resin/PEG filament with 7.5% PEG content is reduced by 20.9 ℃.
Conclusion Thermoplastic epoxy resin film developed in this research has high mechanical properties and thermal stability. The thermoplastic epoxy resin has the advantages of melting and reprocessing. At the same spinning temperature, the PEG-dispersed thermoplastic epoxy resin pellets have a lower extrusion force, so the spinning temperature can be controlled by the modification of PEG. The melt-dispersion process provides a new method for modification of thermoplastic epoxy resin by PEG. High spinnability of thermoplastic epoxy resin/PEG system was achieved by adjusting the spinning temperature of thermoplastic epoxy resin. The melt-dispersed PEG can significantly improve the spinnability of the thermoplastic epoxy resin, and the developed thermoplastic epoxy resin/PEG filament has higher mechanical properties.

Key words: epoxy resin, polyethylene glycol, thermoplastic, spinnability, melt-dispersion, melt-drawing technology, epoxy resin filament

中图分类号: 

  • TQ342

图1

环氧树脂膜的制备过程"

图2

环氧树脂/PEG长丝的制备过程"

图3

环氧树脂膜的应力-应变曲线"

图4

环氧树脂膜的温度-储存模量和温度-tanδ曲线"

图5

环氧树脂/PEG的分子链结构"

图6

环氧树脂/PEG粒料在挤出机中的挤出力"

表1

环氧树脂/PEG粒料的纺丝温度和挤出力"

试样名称 纺丝温度/℃ 挤出力/kN 平均直径/mm
PEG0 300 1.92 0.25
PEG2.5 290 1.90 0.23
PEG5 280 1.88 0.22
PEG7.5 270 1.85 0.20

图7

环氧树脂/PEG长丝的应力-应变曲线"

表2

环氧树脂/PEG长丝应力-应变测试统计结果"

试样名称 弹性模
量/MPa
屈服应
变/%
屈服应
力/MPa
断裂应
变/%
断裂应
力/MPa
PEG0长丝 2 258 4.6 68 200 76
PEG2.5长丝 1 495 5.6 65 260 96
PEG5长丝 1 524 6.0 73 212 89
PEG7.5长丝 2 116 5.7 69 230 78

表3

环氧树脂/PEG长丝动态力学测试统计结果"

试样名称 Tg/℃ 不同温度下的储存模量/MPa
25 ℃ Tg
PEG0长丝 102.7 2 690 45
PEG2.5长丝 95.7 2 732 40
PEG5长丝 87.1 2 801 43
PEG7.5长丝 81.8 2 755 43
[1] 庄群, 张飞, 杜兆芳, 等. 改性芳纶与环氧树脂复合体的制备及其防刺性能[J]. 纺织学报, 2019, 40(12): 98-103.
ZHUANG Qun, ZHANG Fei, DU Zhaofang, et al. Preparation of modified aramid fiber and epoxy resin composites and stab resistance thereof[J]. Journal of Textile Research, 2019, 40(12): 98-103.
[2] WAZARKAR K, KATHALEWAR M, SABNIS A. Development of epoxy-urethane hybrid coatings via non-isocyanate route[J]. European Polymer Journal, 2016, 84: 812-827.
doi: 10.1016/j.eurpolymj.2016.10.021
[3] GAO Wentong, BIE Mengyao, LIU Fu, et al. Self-healable and reprocessable polysulfide sealants prepared from liquid polysulfide oligomer and epoxy resin[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15798-15808.
[4] MA Yijia, CARLOS A Navarro, TRAVIS J Williams, et al. Recovery and reuse of acid digested amine/epoxy-based composite matrices[J]. Polymer Degradation and Stability, 2020. DOI: 10.1016/j.polymdegradstab.2020.109125.
doi: 10.1016/j.polymdegradstab.2020.109125
[5] PETER A Arrabiyeh, DAVID May, MAXIMILIAN Eckrich, et al. An overview on current manufacturing technologies: processing continuous rovings impregnated with thermoset resin[J]. Polymer Composites, 2021, 42(11): 5630-5655.
doi: 10.1002/pc.v42.11
[6] RICKY Hardis, JULIE L P Jessop, FRANK E Peters, et al. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 100-108.
doi: 10.1016/j.compositesa.2013.01.021
[7] KUNAL Wazarkar, MUKESH Kathalewar, ANAGHA Sabnis. Development of epoxy-urethane hybrid coatings via non-isocyanate route[J]. European Polymer Journal, 2016, 84: 812-827.
doi: 10.1016/j.eurpolymj.2016.10.021
[8] SUN Zeyu, XU Lei, CHEN Zhengguo, et al. Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone[J]. Polymers, 2019, 11(3): 461-477.
doi: 10.3390/polym11030461
[9] DI Chengrui, YU Junwei, WANG Baoming, et al. Study of hybrid nanoparticles modified epoxy resin used in filament winding composite[J]. Materials, 2019.DOI: 10.3390/ma12233853.
doi: 10.3390/ma12233853
[10] WANG Xin, ZHAO Xing, CHEN Siqi, et al. Static and fatigue behavior of basalt fiber-reinforced thermoplastic epoxy composites[J]. Journal of Composite Materials, 2020, 54(18): 2389-2398.
doi: 10.1177/0021998319896842
[11] ZHANG Guogao, YIN Tenghao, NIAN Guodong, et al. Fatigue-resistant polyurethane elastomer composites[J]. Extreme Mechanics Letters, 2021.DOI: 10.1016/j.eml.2021.101434.
doi: 10.1016/j.eml.2021.101434
[12] NICOLE E Zander, MARGARET Gillan, ZACHARY Burckhard, et al. Recycled polypropylene blends as novel 3D printing materials[J]. Additive Manufacturing, 2019, 25: 122-130.
doi: 10.1016/j.addma.2018.11.009
[13] KIM M T, RHEE K Y, LEE J H, et al. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes[J]. Composites Part B:Engineering, 2011, 42(5):1257-1261.
doi: 10.1016/j.compositesb.2011.02.005
[14] 徐铭涛, 嵇宇, 仲越, 等. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(9): 203-210.
XU Mingtao, JI Yu, ZHONG Yue, et al. Review on toughening modification of carbon fiber/epoxy resin composites[J]. Journal of Textile Research, 2022, 43(9):203-210.
[1] 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10.
[2] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[3] 刘亚, 程可为, 赵义侠, 于雯, 张淑苹, 钱子茂. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 43(11): 88-93.
[4] 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210.
[5] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[6] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[7] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[8] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
[9] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[10] 孙晨颖, 王文庆, 靳高岭, 王锐. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(06): 171-179.
[11] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[12] 王迎, 王怡婷, 吴佳庆, 郭亚飞, 郝新敏. 生物基锦纶56用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(01): 84-89.
[13] 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93.
[14] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[15] 宋乐, 沈兰萍, 黄显雯, 衡芳芳, 马洪波, 欧阳琴, 陈鹏, 王瑄. 木质素/聚丙烯腈复合纤维的制备及其性能[J]. 纺织学报, 2020, 41(02): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[2] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[3] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[4] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[5] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[6] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[7] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[8] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[9] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .
[10] 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20 -24 .