纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 43-49.doi: 10.13475/j.fzxb.20220806301

• 纺织工程 • 上一篇    下一篇

转杯纺并合效应模型的构建与解析

李玲, 丁倩, 汪军()   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2022-08-16 修回日期:2022-12-13 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 汪军(1973—),男,教授,博士。主要研究方向为新型纺纱技术、纤维制品加工过程数值模拟。E-mail: junwang@dhu.edu.cn
  • 作者简介:李玲(1996—),女,博士生。主要研究方向为双分梳转杯纺成纱机制和成纱结构的表征。
  • 基金资助:
    中央高校基本科研业务费专项资金、东华大学研究生创新基金项目(CUSF-DH-D-2022028);上海市现代纺织前沿科学研究基地资助项目(X11012102-004)

Model construction and analysis based on rotor spinning merging effect

LI Ling, DING Qian, WANG Jun()   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2022-08-16 Revised:2022-12-13 Published:2023-12-15 Online:2024-01-22

摘要:

针对转杯纺纱的并合效应还未有成熟的理论模型这一问题,基于转杯纺纱超前剥取的特征并通过对剥离点、转杯参考点和纤维喂入点的相对运动的图解描述,分析纤维流在凝聚槽内凝聚和剥取规律,从而构建出转杯纺并合效应的理论模型。结果表明:原始纤维层的形态特征不仅是由粗变细而且呈现阶梯式的特点,每个“阶梯”的长度就是输出小节的长度;在不考虑加捻的因素下,输出纱条上属于同一圈的纤维层以输出小节的长度为单位,在纱体中错落分布于并合层的更低层,直至这一圈的纤维层被完全剥取;并合数与转杯直径、纱线捻度成正相关关系,同时验证了并合数计算公式的正确性。

关键词: 转杯纺, 并合效应模型, 须条凝聚, 剥离点, 纤维层, 并合数

Abstract:

Objective Rotor spinning is one of the most mature and widely used spinning technologies among various new types of spinning practically used mass production. The research on the merging effect of rotor spinning is relatively less involved. Therefore, exploring the fiber agglomeration process in the rotor groove and the merging effect will contribute to clarify the spinning mechanism of rotor spinning, study the yarn structure of rotor spinning, and guide the development of new-type rotor spinning.
Method According to the advanced motion characteristics of rotor spinning, it is assumed that the peeling point, rotor reference point and sliver feeding point coincide in the initial state, and the original fiber-layer exists. Without considering the factors of twisting, the ideal distribution shape of fiber-layer in the rotor groove caused by the relative movement between the peeling point, the reference point and the fiber feeding point at each stage, as well as the shape of the output yarn in the process, are derived in combination with the way (Fig. 2). Based on the agglomeration process of whiskers, combined with the fiber supplement amount equal to the output of whiskers peeling, the number of layers of original fiber-layers can be obtained. By combining the original fiber-layer distribution characteristics with the merging effect model, the fiber-layer distribution characteristics of the output yarn can be obtained.
Results The ideal distribution state of condensation whiskers in each representative stage was shown (Fig. 2). The merging situation at any stage was obtained through inductive method. Among rotating cup reference point A, fiber filling point C and peeling point P, coincidence of any two of these three points was taken as a representative stage. The number of original fiber layers for each representative stage of the output yarn was calculated based on the input of the fiber equal to the output of the yarn, and the distribution pattern of the fiber layer of the output yarn was outlined. The distribution characteristics of the number of original fiber-layers in a peeling cycle were derived (Tab. 1 and Fig. 3). It was found that the morphological characteristics of the original fiber-layers not only changed from coarse to fine, but also showed the characteristics of steps. The width of each ″step″ was the length of the output yarn bar. The fiber layer of the output yarn was not simply a layer-by-layer superposition and collection, but the same circle of fiber-layer along the output direction of the yarn, taking the length of the output yarn bar as the unit, was scattered in the lower layer of the composite layer in the yarn body until this circle of fiber layer is completely peeled (Fig. 5). By analyzing the merging effect model, the merging number was obtained, which was equal to the ratio of the number of fibers in the yarn section to the number of fibers in the average section of the fiber flow. The simulated results were validated against practical merging effect from experiments to verify the correctness of the model.
Conclusion Based on the characteristics of advanced peeling of rotor spinning and the analysis of the law of fiber flow collecting and peeling in the rotor groove, a theoretical model of the merging effect of rotor spinning is constructed. The model deduces that the morphological characteristics of the original fiber-layer not only change from coarse to fine, but also show the characteristics of steps. The fiber-layer of the output yarn is not simply a layer-by-layer superposition and collection, but the same circle of fiber-layer taking the length of the output yarn bar as the unit, and it distributes in the lower layer in the yarn body until this circle of fiber-layer completely peeled. By using this model, the calculation formula of the merging number is derived, and the merging number has a positive correlation with the diameter of the rotor and the twist of the yarn.

Key words: rotor spinning, merging effect model, whisker collecting, peeling point, fiber-layer, merging number

中图分类号: 

  • TS104.1

图1

初始状态"

图2

各个代表性阶段须条凝聚理想分布状态"

表1

原始纤维层层数的推导"

阶段
编号
输入量x/周 输出量y/周 原始纤维层
层数z
F0 0 0 0
F1 T 1 g = n m T 0 t = m - n m n m - n
F2 T 1 g = m - n m T 0 t = T 1 t = m 2 + n 2 - 2 m n m n 2 n - m m - n
F3 T 2 g = 2 n - m m T 0 t = T 1 t = 3 m n - m 2 - 2 n 2 m n 2 n - m m - n
F4 T 2 g = 2 m - 2 n m T 0 t = T 1 t = T 2 t = - 4 m n + 2 m 2 + 2 n 2 m n 3 n - 2 m m - n
F5 T 3 g = 3 n - 2 m m T 0 t = T 1 t = T 2 t = 5 m n - 2 m 2 - 3 n 2 m n 3 n - 2 m m - n
F6 T 3 g = 3 m - 3 n m T 0 t = T 1 t = T 2 t = T 3 t = - 6 m n + 3 m 2 + 3 n 2 m n 4 n - 3 m m - n
F7 T 4 g = 4 n - 3 m m T 0 t = T 1 t = T 2 t = T 3 t = 7 m n - 3 m 2 - 4 n 2 m n 4 n - 3 m m - n
··· ··· ··· ···
F(k-2) T ( k / 2 - 1 ) g = ( k - 2 ) ( m - n ) 2 m T 0 t = T 1 t = T 2 t = T 3 t = ··· = T ( k / 2 - 1 ) t = ( k - 2 ) ( m - n ) 2 2 m n 2 k n - ( k - 2 ) m 2 ( m - n )
F(k-1) T ( k / 2 ) g = k n - ( k - 2 ) m 2 m T 0 t = T 1 t = T 2 t = T 3 t = ··· = T ( k / 2 - 1 ) t = 2 ( k - 1 ) m n - ( k - 2 ) m 2 - k + 2 n 2 2 m n 2 k n - ( k - 2 ) m 2 ( m - n )
Fk T ( k / 2 ) g = k ( m - n ) 2 m T 0 t = T 1 t = T 2 t = T 3 t = ··· = T ( k / 2 ) t = k ( m - n ) 2 2 m n ( 2 + k ) n - k m 2 ( m - n )
F(k+1) T ( k / 2 + 1 ) g = ( 2 + k ) n - k m 2 m T 0 t = T 1 t = T 2 t = T 3 t = ··· = T ( k / 2 ) t = 2 ( k + 1 ) m n - k m 2 - ( k + 2 ) n 2 2 m n ( 2 + k ) n - k m 2 ( m - n )

图3

原始纤维层的形态"

图4

转杯内原始纤维层的形态"

图5

1个剥取周期内输出纱条的纤维层分布形态"

[1] 高卫东. 棉纺织手册(下卷)[M]. 北京: 中国纺织出版社, 2021:1530-1536.
GAO Weidong. Cotton textile manual: volume II[M]. Beijing: China Textile & Apparel Press, 2021:1530-1536.
[2] 邢声远. 气流纺纱[M]. 北京: 中国纺织出版社, 1980:16-17.
XING Shengyuan. Air spinning[M]. Beijing: China Textile & Apparel Press, 1980: 16-17.
[3] DAS A, ALAGIRUSAMY R. Fundamental principles of open end yarn spinning[J]. Advances in Yarn Spinning Technology, 2010. DOI:10.1533/9780857090218.79.
[4] 周念慈. 转杯纺的发展与应用[J]. 纺织导报, 2002(4):44-46.
ZHOU Nianci. Development and application of rotor spinning[J]. China Textile Leader, 2002(4):44-46.
[5] 夏治刚, 徐卫林, 叶汶祥. 短纤维纺纱技术的发展概述及关键特征解析[J]. 纺织学报, 2013, 34(6):147-154.
XIA Zhigang, XU Weilin, YE Wenxiang. Development overview and key characteristics analysis of staple fiber spinning technologies[J]. Journal of Textile Research, 2013, 34(6):147-154.
[6] 韩晨晨, 罗彩鸿, 高卫东. 两种新型纺纱技术的发展现状[J]. 棉纺织技术, 2021, 49(11):1-4.
HAN Chenchen, LUO Caihong, GAO Weidong. Development status of two new type of spinning technologies[J]. Cotton Textile Technology, 2021, 49(11): 1-4.
[7] 张百祥. 转杯纺纱[M]. 北京: 中国纺织出版社, 1990:20-21.
ZHANG Baixiang. Rotor spinning[M]. Beijing: China Textile & Apparel Press, 1990:20-21.
[8] CORMACK D. The break spinning of long staple fibres, with special reference to the distribution of twist during yarn formation and its effect on end breakage[D]. Britain: University of Leeds, 1972:50-65.
[9] CORMACK D, GROSBERG P, HO K H. 34-the yarn twist inside the rotor in open-end spinning[J]. The Journal of The Textile Institute, 1979, 70(9): 380-384.
[10] 汪军, 黄秀宝. 转杯纺捻度传递长度的解析研究[J]. 东华大学学报, 2000(1):64-69.
WANG Jun, HUANG Xiubao. Analytical study on twist transmission length of rotor spinning[J]. Journal of Donghua University, 2000 (1): 64-69.
[11] 王姜, 傅婷, 杨建平, 等. 转杯纺假捻盘捻陷作用分析[J]. 纺织学报, 2015, 36(2):30-34.
WANG Jiang, FU Ting, YANG Jianping, et al. Analysis of the twisting blockage effect in the rotor spinning false twist disc[J]. Journal of Textile Research, 2015, 36(2): 30-34.
[12] 肖丰. 新型纺纱与花式纱线[M]. 北京: 中国纺织出版社, 2008:31-32.
XIAO Feng. New spinning technology and fancy yarn[M]. Beijing: China Textile & Apparel Press, 2008:31-32.
[13] KOÇ E, LAWRENCE C A. Mechanisms of wrapper fibre formation in rotor spinning: an experimental approach[J]. Journal of The Textile Institute, 2006, 97(6): 483-492.
[14] 周念慈. 转杯纺纱的成纱结构与特点及今后的发展方向[J]. 现代纺织技术, 2000, 8(2): 36-38.
ZHOU Nianci. Yarn structure and characteristics of rotor spinning and its future development direction[J]. Advanced Textile Technology, 2000, 8(2): 36-38.
[1] 杨瑞华, 何闯, 龚新霞, 陈鹤文. 转杯纺分梳排杂区的气流场数值模拟[J]. 纺织学报, 2022, 43(10): 31-35.
[2] 汪军, 史倩倩, 李玲, 张玉泽. 双喂给双分梳转杯纺技术研究进展[J]. 纺织学报, 2022, 43(08): 12-20.
[3] 杨瑞华, 潘博, 郭霞, 王利军, 李健伟. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(07): 76-81.
[4] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[5] 邓茜茜, 杨瑞华, 徐亚亚, 高卫东. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(07): 31-37.
[6] 杨瑞华, 徐亚亚, 韩瑞叶, 薛元, 高卫东. 多通道转杯纺混色纱的Friele配色模型[J]. 纺织学报, 2019, 40(03): 44-48.
[7] 林惠婷, 高备, 张玉泽, 史倩倩, 汪军. 转杯纺旁路通道设计对成纱质量的影响[J]. 纺织学报, 2019, 40(02): 153-158.
[8] 史倩倩, 高备, 林惠婷, 张玉泽, 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[9] 杨瑞华 韩瑞叶 徐亚亚 薛元 王鸿博 高卫东. 数码转杯纺混色纱中有色纤维混合效果分析[J]. 纺织学报, 2018, 39(07): 32-38.
[10] 徐亚亚 杨瑞华 韩瑞叶 薛元 高卫东. 应用Kubelka-Munk双常数理论的数码转杯纱混色效果预测[J]. 纺织学报, 2018, 39(06): 36-41.
[11] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
[12] 韩瑞叶 杨瑞华 薛元 高卫东. 数码转杯纺的Stearns-Noechel配色模型[J]. 纺织学报, 2017, 38(12): 27-32.
[13] 杨瑞华 薛元 郭明瑞 王鸿博 周建 高卫东. 数码转杯纺成纱原理及其纱线特点[J]. 纺织学报, 2017, 38(11): 32-35.
[14] 刘超 杨瑞华 薛元 高卫东. 凝聚槽类型对转杯内气流场影响的数值模拟[J]. 纺织学报, 2017, 38(05): 128-133.
[15] 马崇启 王玉娟 刘建勇 程璐. 不同纺纱流程下色纺纱色差对比[J]. 纺织学报, 2017, 38(01): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!