纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 176-183.doi: 10.13475/j.fzxb.20220806808
QU Lianyi1, LIU Jianglong1, XU Yingjun1(), WANG Yuzhong2
摘要:
为获取高效耐久的抗菌织物,以儿茶酚、乌托品和氯化锌等为前驱物,通过简便快捷的一步水热反应,在棉、锦纶及锦纶/棉等织物表面原位构筑纳米氧化锌/儿茶酚甲醛树脂结构,制得仿贻贝型耐久抗菌织物。借助扫描电子显微镜、X射线光电子能谱仪等对织物的形貌与化学构成进行测试与表征,分析了织物的抗菌、力学、手感、细胞毒性等性能及甲醛残留量。结果表明:纳米氧化锌被儿茶酚甲醛树脂固着在织物上,所得织物对革兰氏阳性菌、革兰氏阴性菌和真菌均具有高效的非溶出型抗菌作用,且耐水洗效果突出,在循环洗涤50次后的抑菌率仍高达99.99%;抗菌织物的断裂强力未明显下降,手感评分与原织物相近,细胞毒性较低,未检出甲醛残留。
中图分类号:
[1] |
QIU Q, CHEN S, LI Y, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2019.123241.
doi: 10.1016/j.cej.2019.123241 |
[2] | 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179. |
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179. | |
[3] |
LIU C, SHAN H, CHEN X, et al. Novel inorganic-based N-halamine nanofibrous membranes as highly effective antibacterial agent for water disinfection[J]. ACS Appl Mater Interfaces, 2018, 10(51): 44209-44215.
doi: 10.1021/acsami.8b18322 |
[4] |
KONG Q, LI Z, DING F, et al. Hydrophobic N-halamine based POSS block copolymer porous films with antibacterial and resistance of bacterial adsorption performances[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.128407.
doi: 10.1016/j.cej.2021.128407 |
[5] |
SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3): 219-242.
doi: 10.1007/s40820-015-0040-x pmid: 30464967 |
[6] |
LALLO Da Silva B, CAETANO B L, CHIARI-ANDRÉO B G, et al. Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification[J]. Colloids and Surfaces B: Biointerfaces, 2019, 177: 440-447.
doi: S0927-7765(19)30087-6 pmid: 30798065 |
[7] | 戴沈华, 翁良, 李冰艳, 等. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(8): 96-101. |
DAI Shenhua, WENG Liang, LI Bingyan, et al. Preparation and properties of nano-ZnO loaded polyurethane/polyester foamed composite sponge[J]. Journal of Textile Research, 2021, 42(8): 96-101.
doi: 10.1177/004051757204200205 |
|
[8] |
CABRAL R L B, GALVÃO F M F, SOUTO Silva K K O D, et al. Surface modification of ZnO quantum dots coated polylactic acid knitted fabric for photocatalytic application[J]. Journal of Applied Polymer Science, 2022. DOI:10.1002/app.52381.
doi: 10.1002/app.52381 |
[9] |
PRASAD V, ARPUTHARAJ A, BHARIMALLA A, et al. Durable multifunctional finishing of cotton fabrics by in situ synthesis of nano-ZnO[J]. Applied Surface Science, 2016, 390: 936-940.
doi: 10.1016/j.apsusc.2016.08.155 |
[10] |
SALAT M, PETKOVA P, HOYO J, et al. Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive[J]. Carbohydrate Polymers, 2018, 189: 198-203.
doi: S0144-8617(18)30181-4 pmid: 29580399 |
[11] |
ARPUTHARAJ A, NADANATHANGAM V, SHUKLA S R. A simple and efficient protocol to develop durable multifunctional property to cellulosic materials using in situ generated nano-ZnO[J]. Cellulose, 2017, 24(8): 3399-3410.
doi: 10.1007/s10570-017-1335-5 |
[12] |
WANG C, LV J, REN Y, et al. Cotton fabric with plasma pretreatment and ZnO/carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property[J]. Carbohydrate Polymers, 2016, 138: 106-113.
doi: 10.1016/j.carbpol.2015.11.046 pmid: 26794743 |
[13] |
EKANAYAKE U M, DISSANAYAKE D, RATHUWADU N, et al. Facile fabrication of fluoro-polymer self-assembled ZnO nanoparticles mediated, durable and robust omniphobic surfaces on polyester fabrics[J]. Journal of Fluorine Chemistry, 2020. DOI:10.1016/j.jfluchem.2020.109565.
doi: 10.1016/j.jfluchem.2020.109565 |
[14] |
WANG M, ZHANG M, PANG L, et al. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance[J]. Journal of Colloid and Interface Science, 2019, 537: 91-100.
doi: S0021-9797(18)31304-3 pmid: 30423492 |
[15] |
ZHANG D, CHEN L, ZANG C, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013, 92(2): 2088-2094.
doi: 10.1016/j.carbpol.2012.11.100 pmid: 23399262 |
[16] |
ZHANG M, PANG J, BAO W, et al. Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation[J]. Applied Surface Science, 2017, 419: 16-23.
doi: 10.1016/j.apsusc.2017.05.008 |
[17] |
GUO Q, CHEN J, WANG J, et al. Recent progress in synthesis and application of mussel-inspired adhe-sives[J]. Nanoscale, 2020, 12(3): 1307-1324.
doi: 10.1039/C9NR09780E |
[18] | NORTH M A, DEL Grosso C A, WILKER J J. High strength underwater bonding with polymer mimics of mussel adhesive proteins[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7866-7872. |
[19] |
YANG Y, JI H, DUAN H, et al. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications[J]. Polymer Chemistry, 2019, 10(33): 4537-4550.
doi: 10.1039/C9PY00846B |
[20] |
YANG Y, ZHU W, SHI B, et al. Construction of a thermo-responsive polymer brush decorated Fe3O4@catechol-formaldehyde resin core-shell nanosphere stabilized carbon dots/PdNP nanohybrid and its application as an efficient catalyst[J]. Journal of Materials Chemistry A, 2020, 8(7): 4017-4029.
doi: 10.1039/C9TA12614G |
[21] |
XU C L, WANG Y Z. Novel dual superlyophobic materials in water-oil systems: under oil magneto-fluid transportation and oil-water separation[J]. Journal of Materials Chemistry A, 2018, 6(7): 2935-2941.
doi: 10.1039/C7TA10739K |
[22] |
NA J H, KANG Y C, PARK S K. Electrospun MOF-based ZnSe nanocrystals confined in N-doped mesoporous carbon fibers as anode materials for potassium ion batteries with long-term cycling stability[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.131651.
doi: 10.1016/j.cej.2021.131651 |
[23] |
LI X, WANG L, LI X, et al. Multi-dimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber[J]. Carbon, 2021, 172: 15-25.
doi: 10.1016/j.carbon.2020.09.068 |
[24] |
DONG F, LIU H, HO W K, et al. (NH4)2CO3 mediated hydrothermal synthesis of N-doped (BiO)2CO3 hollow nanoplates microspheres as high-performance and durable visible light photocatalyst for air cleaning[J]. Chemical Engineering Journal, 2013, 214: 198-207.
doi: 10.1016/j.cej.2012.10.039 |
[25] |
LI Y, ZHANG W, ZHAO J, et al. A route of alkylated carbon black with hydrophobicity, high dispersibility and efficient thermal conductivity[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2020.147858.
doi: 10.1016/j.apsusc.2020.147858 |
[26] | ZHANG Y, YANG Y, DUAN H, et al. Mussel-inspired catechol-formaldehyde resin-coated Fe3O4 core-shell magnetic nanospheres: an effective catalyst support for highly active palladium nanoparticles[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44535-44545. |
[27] |
CUI D, SHI B, XIA Z, et al. Construction of polymer-decorated Fe3O4@catechol-formaldehyde resin amphiphilic Janus nanospheres for catalytic applica-tions[J]. ACS Applied Nano Materials, 2022, 5(4): 5660-5669.
doi: 10.1021/acsanm.2c00595 |
[28] |
BHARATHI P, HARISH S, ARCHANA J, et al. Enhanced charge transfer and separation of hierarchical CuO/ZnO composites: the synergistic effect of photocatalysis for the mineralization of organic pollutant in water[J]. Applied Surface Science, 2019, 484: 884-891.
doi: 10.1016/j.apsusc.2019.03.131 |
[29] |
ZANG Z, TANG X. Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method[J]. Journal of Alloys and Compounds, 2015, 619: 98-101.
doi: 10.1016/j.jallcom.2014.09.072 |
[30] |
GAN D, XING W, JIANG L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-lignin chemistry nanoparticles-triggered dynamic redox catechol[J]. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8 |
[31] | NIYONSHUTI I I, KRISHNAMURTHI V R, OKYERE D, et al. Polydopamine surface coating synergizes the antimicrobial activity of silver nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40067-40077. |
[1] | 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213. |
[2] | 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198. |
[3] | 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 222-229. |
[4] | 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211. |
[5] | 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125. |
[6] | 程绿竹, 王宗乾, 盛红梅, 钟辉, 夏丽萍. 锦纶织物中氯菊酯含量测试方法比较[J]. 纺织学报, 2022, 43(09): 143-148. |
[7] | 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106. |
[8] | 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96. |
[9] | 李娜, 王晓, 李振宝, 李佥, 杜冰. 基于腺嘌呤核苷酸单体的光接枝生态阻燃棉织物制备及其性能[J]. 纺织学报, 2022, 43(07): 97-103. |
[10] | 杨尧, 程伟, 余圆圆, 王强, 王平, 周曼. 抗菌和防细菌黏附整理剂在棉织物改性中的应用[J]. 纺织学报, 2022, 43(07): 104-110. |
[11] | 李平阳, 付灿, 董玲玲. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(06): 107-114. |
[12] | 王宗乾, 程绿竹, 金鲜花, 夏丽萍. 基于紫外光谱法的纯棉织物中氯菊酯含量检测方法[J]. 纺织学报, 2022, 43(06): 127-132. |
[13] | 侯倩倩, 李文熙, 赵美华. 光催化条件下棉织物的蓝晒工艺印相[J]. 纺织学报, 2022, 43(04): 110-116. |
[14] | 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96. |
[15] | 何颖婷, 李敏, 付少海. 靛蓝分散体的制备及其还原-氧化过程[J]. 纺织学报, 2022, 43(04): 84-89. |
|