纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 176-183.doi: 10.13475/j.fzxb.20220806808

• 染整与化学品 • 上一篇    下一篇

仿贻贝型耐久抗菌织物的制备及其性能

曲连艺1, 刘江龙1, 徐英俊1(), 王玉忠2   

  1. 1.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    2.四川大学 化学学院, 四川 成都 610064
  • 收稿日期:2022-08-17 修回日期:2022-11-17 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 徐英俊(1991—),男,教授,博士。主要研究方向为功能纤维纺织品。E-mail: yingjun.xu@qdu.edu.cn。
  • 作者简介:曲连艺(1994—),男,博士生。主要研究方向为抗菌纤维纺织品。
  • 基金资助:
    国家自然科学基金项目(51991354);国家自然科学基金项目(51991350)

Preparation and properties of mussel-inspired durable antimicrobial fabrics

QU Lianyi1, LIU Jianglong1, XU Yingjun1(), WANG Yuzhong2   

  1. 1. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    2. College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
  • Received:2022-08-17 Revised:2022-11-17 Published:2023-02-15 Online:2023-03-07

摘要:

为获取高效耐久的抗菌织物,以儿茶酚、乌托品和氯化锌等为前驱物,通过简便快捷的一步水热反应,在棉、锦纶及锦纶/棉等织物表面原位构筑纳米氧化锌/儿茶酚甲醛树脂结构,制得仿贻贝型耐久抗菌织物。借助扫描电子显微镜、X射线光电子能谱仪等对织物的形貌与化学构成进行测试与表征,分析了织物的抗菌、力学、手感、细胞毒性等性能及甲醛残留量。结果表明:纳米氧化锌被儿茶酚甲醛树脂固着在织物上,所得织物对革兰氏阳性菌、革兰氏阴性菌和真菌均具有高效的非溶出型抗菌作用,且耐水洗效果突出,在循环洗涤50次后的抑菌率仍高达99.99%;抗菌织物的断裂强力未明显下降,手感评分与原织物相近,细胞毒性较低,未检出甲醛残留。

关键词: 棉织物, 锦纶织物, 锦纶/棉织物, 抗菌织物, 纳米氧化锌, 儿茶酚, 耐水洗性, 水热反应

Abstract:

Objective Fabrics offer a growth environment for pathogenic microorganisms, which bring health risks to humans and affect the use of fabrics. It is an important demand to develop antibacterial fabrics that are harmful to different pathogenic microorganisms but benign to humans. Metal-based nanoparticles including ZnO nanoparticles are one of the most widely used antibacterial agents in the field due to their efficient and broad-spectrum antimicrobial activities in attacking bacteria and fungi. However, they often do not strongly bond with the fabric, causing the material to show poor laundering durability and suffer low stability in performance.
Method Aiming for achieving efficient and durable antibacterial fabrics via a facile and applicable approach, a kind of one-pot hydrothermal reaction containing catechol, hexamethylenetetramine, and ZnCl2 was performed, by which a kind of coatings composed of ZnO nanoparticles/catechol-formaldehyde resins (ZnO/CFR) were in-situ constructed on surfaces of both cellulosic and polyamide fabrics, and thus a series of mussel-inspired durable antimicrobial cotton, polyamide, and polyamide/cotton fabrics were obtained. In the system, catechol moieties of the resin are the origin of the superior adhesion capacity of the coating, contributing to the strong interfacial bonding with the material via covalent bonds and noncovalent interactions. Micro morphologies and chemical compositions of the fabric were studied by using scanning electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectrometry, and the antimicrobial activities,laundering durability,tensile strength,hand feel,mammalian cell viability and formaldehyde content of the fabric were tested and analyzed,respectively.
Results It was found that all the coated fabrics turned yellow and some particles appeared randomly on surfaces of the fabrics (Fig. 1). ZnO/CFR coated samples presented Zn2p spectra with a double band corresponding to Zn2p1/2 and Zn3p3/2, having two peaks at 1 045.1 and 1 022.2 eV (Fig. 2). After the zone of inhibition determination test, no microbial colony grows in the area in contact with the fabric and no inhibition zone appears around the edge of the sample (Fig. 3). All the agar plates corresponding to ZnO/CFR coated fabrics before and after washing presented no or very few microbial colonies, while all the agar plates corresponding to uncoated fabrics had some microbial growth of microbial colonies (Fig. 4). ZnO/CFR coated sample kept a relatively high content of zinc and exhibited a very high bacteriostasis and fungistasis rate of 99.99% even after 50 accelerated laundering cycles (Fig. 5). ZnO/CFR coated fabrics showed no or very few decreases in weft and warp directional tensile strength compared with uncoated ones (Fig. 6), and achieved softness, resilience, and smoothness scores nearly equivalent to those of the untreated samples (Fig. 7). ZnO/CFR coated fabrics exhibited a little decrease in the relative cell viability value compared to the control sample, while no formaldehyde was detected in the fabric using a test with a detection limit of 20 mg/kg (Tab. 1).
Conclusion ZnO nanoparticles were anchored onto surfaces of cotton, polyamide, and polyamide/cotton fabrics by catechol-formaldehyde resins, where the morphology and distribution of the nanoparticles were different on the surface of cellulosic and polyamide fibers. ZnO/CFR coated fabrics presented an antimicrobial activity with non-dissolution behaviors to Gram-positive bacteria, Gram-negative bacteria, and fungi. ZnO/CFR coated fabrics had high laundering durability and showed high inhibiting activities to bacteria and fungi even after 50 times accelerated laundering cycles. ZnO/CFR coatings did not deteriorate the wearing comfort of the fabric and nor the human health.

Key words: cotton fabric, polyamide fabric, polyamide/cotton fabric, antimicrobial fabric, ZnO nanoparticle, catechol, laundering durability, hydrothermal reaction

中图分类号: 

  • TS195

图1

不同织物的数码照片和扫描电镜照片"

图2

棉-ZnO/CFR的XPS全谱图和Zn2p高分辨谱图"

图3

不同织物的抑菌圈测试结果"

图4

不同织物抗菌性能"

图5

不同织物的抑菌率和锌含量随洗涤次数的变化趋势"

图6

不同织物的断裂强力及断裂伸长率"

图7

不同织物的手感评估测试结果"

表1

织物的细胞毒性和甲醛残留量"

织物名称 NIH3T3细胞活性/% 甲醛含量/(mg·kg-1)
64
棉-ZnO/CFR 51(80*) 未检出
锦纶 75
锦纶-ZnO/CFR 62(83*) 未检出
锦纶/棉 42
锦纶/棉-ZnO/CFR 38(90*) 未检出
[1] QIU Q, CHEN S, LI Y, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2019.123241.
doi: 10.1016/j.cej.2019.123241
[2] 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress of antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179.
[3] LIU C, SHAN H, CHEN X, et al. Novel inorganic-based N-halamine nanofibrous membranes as highly effective antibacterial agent for water disinfection[J]. ACS Appl Mater Interfaces, 2018, 10(51): 44209-44215.
doi: 10.1021/acsami.8b18322
[4] KONG Q, LI Z, DING F, et al. Hydrophobic N-halamine based POSS block copolymer porous films with antibacterial and resistance of bacterial adsorption performances[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.128407.
doi: 10.1016/j.cej.2021.128407
[5] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3): 219-242.
doi: 10.1007/s40820-015-0040-x pmid: 30464967
[6] LALLO Da Silva B, CAETANO B L, CHIARI-ANDRÉO B G, et al. Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification[J]. Colloids and Surfaces B: Biointerfaces, 2019, 177: 440-447.
doi: S0927-7765(19)30087-6 pmid: 30798065
[7] 戴沈华, 翁良, 李冰艳, 等. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(8): 96-101.
DAI Shenhua, WENG Liang, LI Bingyan, et al. Preparation and properties of nano-ZnO loaded polyurethane/polyester foamed composite sponge[J]. Journal of Textile Research, 2021, 42(8): 96-101.
doi: 10.1177/004051757204200205
[8] CABRAL R L B, GALVÃO F M F, SOUTO Silva K K O D, et al. Surface modification of ZnO quantum dots coated polylactic acid knitted fabric for photocatalytic application[J]. Journal of Applied Polymer Science, 2022. DOI:10.1002/app.52381.
doi: 10.1002/app.52381
[9] PRASAD V, ARPUTHARAJ A, BHARIMALLA A, et al. Durable multifunctional finishing of cotton fabrics by in situ synthesis of nano-ZnO[J]. Applied Surface Science, 2016, 390: 936-940.
doi: 10.1016/j.apsusc.2016.08.155
[10] SALAT M, PETKOVA P, HOYO J, et al. Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive[J]. Carbohydrate Polymers, 2018, 189: 198-203.
doi: S0144-8617(18)30181-4 pmid: 29580399
[11] ARPUTHARAJ A, NADANATHANGAM V, SHUKLA S R. A simple and efficient protocol to develop durable multifunctional property to cellulosic materials using in situ generated nano-ZnO[J]. Cellulose, 2017, 24(8): 3399-3410.
doi: 10.1007/s10570-017-1335-5
[12] WANG C, LV J, REN Y, et al. Cotton fabric with plasma pretreatment and ZnO/carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property[J]. Carbohydrate Polymers, 2016, 138: 106-113.
doi: 10.1016/j.carbpol.2015.11.046 pmid: 26794743
[13] EKANAYAKE U M, DISSANAYAKE D, RATHUWADU N, et al. Facile fabrication of fluoro-polymer self-assembled ZnO nanoparticles mediated, durable and robust omniphobic surfaces on polyester fabrics[J]. Journal of Fluorine Chemistry, 2020. DOI:10.1016/j.jfluchem.2020.109565.
doi: 10.1016/j.jfluchem.2020.109565
[14] WANG M, ZHANG M, PANG L, et al. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance[J]. Journal of Colloid and Interface Science, 2019, 537: 91-100.
doi: S0021-9797(18)31304-3 pmid: 30423492
[15] ZHANG D, CHEN L, ZANG C, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013, 92(2): 2088-2094.
doi: 10.1016/j.carbpol.2012.11.100 pmid: 23399262
[16] ZHANG M, PANG J, BAO W, et al. Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation[J]. Applied Surface Science, 2017, 419: 16-23.
doi: 10.1016/j.apsusc.2017.05.008
[17] GUO Q, CHEN J, WANG J, et al. Recent progress in synthesis and application of mussel-inspired adhe-sives[J]. Nanoscale, 2020, 12(3): 1307-1324.
doi: 10.1039/C9NR09780E
[18] NORTH M A, DEL Grosso C A, WILKER J J. High strength underwater bonding with polymer mimics of mussel adhesive proteins[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7866-7872.
[19] YANG Y, JI H, DUAN H, et al. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications[J]. Polymer Chemistry, 2019, 10(33): 4537-4550.
doi: 10.1039/C9PY00846B
[20] YANG Y, ZHU W, SHI B, et al. Construction of a thermo-responsive polymer brush decorated Fe3O4@catechol-formaldehyde resin core-shell nanosphere stabilized carbon dots/PdNP nanohybrid and its application as an efficient catalyst[J]. Journal of Materials Chemistry A, 2020, 8(7): 4017-4029.
doi: 10.1039/C9TA12614G
[21] XU C L, WANG Y Z. Novel dual superlyophobic materials in water-oil systems: under oil magneto-fluid transportation and oil-water separation[J]. Journal of Materials Chemistry A, 2018, 6(7): 2935-2941.
doi: 10.1039/C7TA10739K
[22] NA J H, KANG Y C, PARK S K. Electrospun MOF-based ZnSe nanocrystals confined in N-doped mesoporous carbon fibers as anode materials for potassium ion batteries with long-term cycling stability[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.131651.
doi: 10.1016/j.cej.2021.131651
[23] LI X, WANG L, LI X, et al. Multi-dimensional ZnO@MWCNTs assembly derived from MOF-5 heterojunction as highly efficient microwave absorber[J]. Carbon, 2021, 172: 15-25.
doi: 10.1016/j.carbon.2020.09.068
[24] DONG F, LIU H, HO W K, et al. (NH4)2CO3 mediated hydrothermal synthesis of N-doped (BiO)2CO3 hollow nanoplates microspheres as high-performance and durable visible light photocatalyst for air cleaning[J]. Chemical Engineering Journal, 2013, 214: 198-207.
doi: 10.1016/j.cej.2012.10.039
[25] LI Y, ZHANG W, ZHAO J, et al. A route of alkylated carbon black with hydrophobicity, high dispersibility and efficient thermal conductivity[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2020.147858.
doi: 10.1016/j.apsusc.2020.147858
[26] ZHANG Y, YANG Y, DUAN H, et al. Mussel-inspired catechol-formaldehyde resin-coated Fe3O4 core-shell magnetic nanospheres: an effective catalyst support for highly active palladium nanoparticles[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44535-44545.
[27] CUI D, SHI B, XIA Z, et al. Construction of polymer-decorated Fe3O4@catechol-formaldehyde resin amphiphilic Janus nanospheres for catalytic applica-tions[J]. ACS Applied Nano Materials, 2022, 5(4): 5660-5669.
doi: 10.1021/acsanm.2c00595
[28] BHARATHI P, HARISH S, ARCHANA J, et al. Enhanced charge transfer and separation of hierarchical CuO/ZnO composites: the synergistic effect of photocatalysis for the mineralization of organic pollutant in water[J]. Applied Surface Science, 2019, 484: 884-891.
doi: 10.1016/j.apsusc.2019.03.131
[29] ZANG Z, TANG X. Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method[J]. Journal of Alloys and Compounds, 2015, 619: 98-101.
doi: 10.1016/j.jallcom.2014.09.072
[30] GAN D, XING W, JIANG L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-lignin chemistry nanoparticles-triggered dynamic redox catechol[J]. Nature Communications, 2019, 10(1): 1-10.
doi: 10.1038/s41467-018-07882-8
[31] NIYONSHUTI I I, KRISHNAMURTHI V R, OKYERE D, et al. Polydopamine surface coating synergizes the antimicrobial activity of silver nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40067-40077.
[1] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[2] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[3] 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 222-229.
[4] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[5] 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125.
[6] 程绿竹, 王宗乾, 盛红梅, 钟辉, 夏丽萍. 锦纶织物中氯菊酯含量测试方法比较[J]. 纺织学报, 2022, 43(09): 143-148.
[7] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[8] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[9] 李娜, 王晓, 李振宝, 李佥, 杜冰. 基于腺嘌呤核苷酸单体的光接枝生态阻燃棉织物制备及其性能[J]. 纺织学报, 2022, 43(07): 97-103.
[10] 杨尧, 程伟, 余圆圆, 王强, 王平, 周曼. 抗菌和防细菌黏附整理剂在棉织物改性中的应用[J]. 纺织学报, 2022, 43(07): 104-110.
[11] 李平阳, 付灿, 董玲玲. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(06): 107-114.
[12] 王宗乾, 程绿竹, 金鲜花, 夏丽萍. 基于紫外光谱法的纯棉织物中氯菊酯含量检测方法[J]. 纺织学报, 2022, 43(06): 127-132.
[13] 侯倩倩, 李文熙, 赵美华. 光催化条件下棉织物的蓝晒工艺印相[J]. 纺织学报, 2022, 43(04): 110-116.
[14] 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96.
[15] 何颖婷, 李敏, 付少海. 靛蓝分散体的制备及其还原-氧化过程[J]. 纺织学报, 2022, 43(04): 84-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[3] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[4] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[7] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[8] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[9] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[10] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .