纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 30-38.doi: 10.13475/j.fzxb.20220807101

• 纤维材料 • 上一篇    下一篇

聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性

王镕琛1, 张恒1,2(), 翟倩1, 刘瑞焱1, 黄鹏宇1, 李霞1,2, 甄琪2,3, 崔景强2,4   

  1. 1.中原工学院 纺织学院, 河南 郑州 451191
    2.河南省医用高分子材料技术与应用重点实验室,河南 新乡 453400
    3.中原工学院 服装学院, 河南 郑州 451191
    4.河南驼人医疗器械集团有限公司, 河南 新乡 453400
  • 收稿日期:2022-08-17 修回日期:2023-03-14 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 张恒张恒(1986—),男,副教授,博士。主要研究方向为新型非织造材料的加工技术及其功能性应用。E-mail: m-esp@163.com
  • 作者简介:王镕琛(1996—),男,硕士生。主要研究方向为新型非织造成形技术。
  • 基金资助:
    国家自然科学基金项目(52003306);河南省高等学校重点科研项目(23A540003);河南省重大科技专项资助项目(221100310500);河南省医用高分子材料技术与应用重点实验室项目(1-TR-B-03-220317)

Preparation and fast wettability of polylactic acid micro-nanofibrous dressing by melt blowing process

WANG Rongchen1, ZHANG Heng1,2(), ZHAI Qian1, LIU Ruiyan1, HUANG Pengyu1, LI Xia1,2, ZHEN Qi2,3, CUI Jingqiang2,4   

  1. 1. School of Textile, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Henan Key Laboratory of Medical Polymer Materials Technology and Application, Xinxiang, Henan 453400, China
    3. School of Clothing, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    4. Henan Tuoren Medical Device Co., Ltd., Xinxiang, Henan 453400, China
  • Received:2022-08-17 Revised:2023-03-14 Published:2024-01-15 Online:2024-03-14

摘要:

为拓展聚乳酸(PLA)超细纤维非织造材料在医用敷料领域的应用,以聚乙二醇(PEG)、十二烷基硫酸钠(SDS)共混改性PLA为原料,利用熔喷非织造成形方法制备PLA/PEG/SDS超细纤维材料,并对其结构和导液特性进行测试与分析。结果表明:随着SDS质量分数由0%增大到1.5%,PLA/PEG/SDS共混聚合物的冷结晶温度从116.02 ℃降至93.58 ℃(降低约23.9%),熔融温度从164.10 ℃降至150.58 ℃(降低约8.9%);材料中超细纤维(纤维直径<5 μm)的数量占比从0%增大至57%,同时5 μL水的浸没时间从0.24 s降低至0.06 s,液体扩散面积从36.05 cm2增大至78.26 cm2,吸水速率从4.38%/s提升至9.15%/s,液态水分扩散速率从2.21 mm/s提升至8.34 mm/s,表明液体导液特性有所提升,可用做敷料和补片等医用护理材料的基材。

关键词: 非织造材料, 熔喷技术, 超细纤维, 聚乳酸, 聚乙二醇, 十二烷基硫酸钠, 亲水改性, 敷料

Abstract:

Objective Polylactic acid (PLA) micro-nanofibrous nonwovens have weak hydrophilicity and low cell adhesion, adversely affecting wound healing, and are more likely to cause inflammation when used for preparing dressings. This considerably limits the effective use of PLA micro-nanofibrous nonwovens in the healthcare sector. Therefore, it is necessary to modify PLA hydrophilicity to improve its use in healthcare applications.

Method Polyethylene glycol (PEG), sodium dodecyl sulfate (SDS) and polylactic acid are fused and blended. PLA blending raw materials with the SDS mass ratio of 0%, 0.3%, 0.6%, 0.9%, 1.2% and 1.5% are fed into screw extruder to melt. The melt is quantitatively transported to the spinneret hole of the die head by the pump and extruded in the form of melt stream through the spinneret hole. PLA micro-nanofibrous are formed by melt microflow under the action of high temperature and high-speed air flow at the die, which are then collected on the receiving screen after drafting and self-bonded to form PLA micro-nanofibrous nonwovens. Finally, the PLA micro-nanofibrous dressing is prepared by thermal lamination of the PLA micro-nanofibrous nonwoven and the viscose spunlaced nonwoven.

Results The contact angle of the sample free of SDS was 116° (>90°) and did not change with time. With the increase of SDS ratio, the wetting time of the sample was gradually shortened. When the SDS ratio reached 1.5%, the droplets could be completely spread on the material in 0.06 s, and the sample showed super hydrophilic effect at this time. The absorption intensities of infrared curves at 1 080 and 1 750 cm-1 were enhanced after SDS addition, indicating that the ester group of PLA fiber increased after SDS addition, so the dynamic contact angle of the sample with SDS addition decreased at the same time, and the liquid conductivity of the sample was enhanced compared with that without SDS addition. The diffusion area of liquid on PLA micro-nanofibrous nonwovens increased from 36.05 cm2 to 78.26 cm2, which increased by 117.08%. The wetting time of the surface layer and bottom layer of the sample decreased from 5.34 and 3.75 s (3-5 s is fast) to 2.91 and 2.81 s (≤3 s is the maximum speed), respectively. The water absorption rate increased gradually from 4.38%/s and 4.31%/s (0-9%/s is extremely slow) to 9.15%/s and 9.39%/s (9%-29%/s is slow), respectively. The diffusion velocities of liquid water in the surface layer and bottom layer increased from 2.21 and 2.77 mm/s (2.0-2.9 mm/s is medium speed) to 8.34 and 8.11 mm/s (≥4.0 mm/s is the maximum speed). At this time, the liquid absorption rate reaches 429.94% and the liquid retention rate reaches 359.42%. According to the observation, the PLA micro-nanofibrous nonwoven with SDS has a significant influence in preparing wound dressing guide liquid, and can be naturally degraded after use, which is in line with the current characteristics of green environmental protection.

Conclusion PLA micro-nanofibrous nonwovens with rapid liquid conduction characteristics were prepared by melt blowing technology. A small amount of SDS can reduce the composite viscosity of PLA and make the polymer fluidity better. The rheological property of the polymer with SDS is better, causing the melt to be more easily drawn, so the diameter of the ejecta fiber is smaller. The addition of SDS will increase the ester group of PLA fiber, facilitating the rapid liquid conductivity enhancement of PLA micro-nanofibrous nonwovens. Moreover, the prepared PLA micro-nanofibrous dressings can be naturally degraded after use, which is in line with the characteristics of current green environmental protection, and has good research significance in the field of medical nursing.

Key words: nonwoven, melt blowing, micro-nanofibrous, polylactic acid, polyethylene glycol, sodium dodecyl sulfate, hydrophilic modification, dressing

中图分类号: 

  • TS172

图1

PLA/PEG/SDS超细纤维材料成形工艺原理图"

表1

主要熔喷纺丝工艺参数"

螺杆温度/℃ 模头
温度/℃
热风
温度/℃
风压/
kPa
接收
距离/cm
一区 二区 三区 四区 五区
180 210 230 230 230 220 230 45 14

图2

PLA/PEG/SDS共混聚合物的DSC熔融曲线及流变曲线"

图3

超细纤维材料的表面扫描电镜照片"

图4

超细纤维材料的直径分布曲线"

图5

超细纤维材料的的力学性能曲线"

表2

超细纤维材料的力学性能参数"

样品名称 断裂强力/N 断裂伸长率/% 顶破
强力/N
纵向 横向 纵向 横向
PLA/PEG 10.8 5.4 1.9 5.4 5.5
PLA/PEG/SDS0.3 18.0 7.9 2.6 6.7 8.1
PLA/PEG/SDS0.6 22.0 9.2 3.0 8.1 13.2
PLA/PEG/SDS0.9 24.7 12.2 3.1 11.6 13.4
PLA/PEG/SDS1.2 26.5 13.4 3.3 12.6 18.2
PLA/PEG/SDS1.5 27.5 15.2 3.6 15.1 19.4

图6

超细纤维材料的XRD曲线"

图7

超细纤维材料的透气率"

图8

超细纤维材料的动态水接触角"

图9

超细纤维材料的红外光谱图"

图10

液体扩散面积-时间曲线及扩散图"

表3

超细纤维材料的液态水分管理能力"

样品
名称
浸湿时间/s 吸水速率/
(%·s-1)
液态水分扩散
速率/(mm·s-1)
表层 底层 表层 底层 表层 底层
PLA/PEG/SDS0.3 5.34 3.75 4.38 4.31 2.21 2.77
PLA/PEG/SDS0.6 3.37 3.38 4.92 4.78 3.18 3.07
PLA/PEG/SDS0.9 3.09 3.09 6.14 6.51 3.84 3.79
PLA/PEG/SDS1.2 3.01 3.02 8.35 8.59 5.02 4.92
PLA/PEG/SDS1.5 2.91 2.81 9.15 9.39 8.34 8.11

图11

吸液率与保液率随SDS质量分数的变化规律"

图12

快速导液PLA超细纤维非织造材料的结构及敷料应用"

[1] 刘雷艮, 沈忠安, 林振锋, 等. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(5): 20-24.
LIU Leigen, SHEN Zhongan, LIN Zhenfeng, et al. Property and mechanism of poly( lactic acide)/chitosan/Fe3O4 superfine fibrous membrane adsorbing acid blue MTR[J]. Journal of Textile Research, 2020, 41(5): 20-24.
[2] DZIERZKOWSKA E, SCISŁOWSKA-CZARNECKA A, KUDZIN M, et al. Effects of process parameters on structure and properties of melt-blown poly(lactic acid) nonwovens for skin regeneration[J]. Journal of Functional Biomaterials, 2021.DOI:10.3390/jfb12010016.
[3] YU B, CAO Y, SUN H, et al. The structure and properties of biodegradable PLLA/PDLA for melt-blown nonwovens[J]. Journal of Polymers and the Environment, 2017, 25(2): 510-517.
doi: 10.1007/s10924-016-0827-y
[4] LENG J, WU J, ZHANG J. Preparation of thermoplastic polyurethane parts reinforced with in situ polylactic acid microfibers during fused deposition modeling: the influences of deposition-induced effects[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21476-21484.
doi: 10.1021/acs.iecr.9b04285
[5] 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1): 49-57.
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1): 49-57.
[6] SCAFFARO R, MAIO A, GULINO E F. Hydrolytic degradation of PLA/posidonia oceanica green composites: a simple model based on starting morpho-chemical properties[J]. Composites Science and Technology, 2021, 213: 1-5.
[7] RANJBAR-MOHAMMADI M, NOURI M. Production and in vitro analysis of catechin incorporated electrospun gelatin/poly (lactic acid) microfibers for wound dressing applications[J]. Journal of Industrial Textiles, 2021. DOI: 10.1177/15280837211060883.
[8] FARAHANI A, ZAREI-HANZAKI A, ABEDI H R, et al. An investigation into the polylactic acid texturization through thermomechanical processing and the improved d33 piezoelectric outcome of the fabricated scaffolds[J]. Journal of Materials Research and Technology, 2021, 15: 6356-6366.
doi: 10.1016/j.jmrt.2021.11.048
[9] CHEERAROT O, SAIKRASUN S. Water holding performance of natural fiber-filled biodegradable absorbing materials[J]. Journal of Natural Fibers, 2022, 19(14): 8978-8992.
doi: 10.1080/15440478.2021.1982105
[10] PERUMAL G, PAPPURU S, CHAKRABORTY D, et al. Synthesis and characterization of curcumin loaded PLA:hyperbranched polyglycerol electrospun blend for wound dressing applications[J]. Materials Science and Engineering: C, 2017, 76: 1196-1204.
doi: 10.1016/j.msec.2017.03.200
[11] ECHEVERRÍA C, MUÑOZ-BONILLA A, CUERVO-RODRÍGUEZ R, et al. Antibacterial PLA fibers containing thiazolium groups as wound dressing materials[J]. ACS Applied Bio Materials, 2019, 2(11): 4714-4719.
doi: 10.1021/acsabm.9b00923 pmid: 35021471
[12] GIBSON C P, LITWINOWICZ M A, TELLAM J P, et al. Water-resistant surface modification of hydrophobic polymers with water-soluble surfactant additives[J]. Polymers, 2021, 13(19): 1-7.
doi: 10.3390/polym13010001
[13] AYDEMIR D, GARDNER D J. Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol. 2020. 116867.
[14] 吕丽华, 刘桂彬, 孙艳丽. 阻燃型玄武岩织物/聚乳酸复合材料的研制[J]. 纺织学报, 2013, 34(1): 20-24.
LÜ Lihua, LIU Guibin, SUN Yanli. Preparation of flame retardant basalt fiber fabric/polylactic acid composite[J]. Journal of Textile Research, 2013, 34(1): 20-24.
doi: 10.1177/004051756403400104
[15] HUANG C, THOMAS N L. Fabricating porous poly-(lactic acid) fibres via electrospinning[J]. European Polymer Journal, 2018, 99: 464-476.
doi: 10.1016/j.eurpolymj.2017.12.025
[16] JAFARI M, SHIM E, JOIJODE A. Fabrication of poly-(lactic acid) filter media via the meltblowing process and their filtration performances: a comparative study with polypropylene meltblown[J]. Separation and Purification Technology, 2021. DOI: 10.1016/j.seppur. 2020. 118185.
[17] 夏云霞, 李磊, 罗章生, 等. 基于闪蒸法制备再生聚乙烯无纺布及其性能研究[J]. 中国塑料, 2022, 36(5): 14-18.
doi: 10.19491/j.issn.1001-9278.2022.05.003
XIA Yunxia, LI Lei, LUO Zhangsheng, et al. Preparation and properties ofrecycled polyethylene non-woven fabrics based on flash evaporation[J]. China Plastics, 2022, 36(5): 14-18.
doi: 10.19491/j.issn.1001-9278.2022.05.003
[18] 李磊, 康卫民, 程博闻, 等. 新型溶液喷射法制备氧化铝纤维及性能研究[J]. 功能材料, 2014, 45(13): 13082-13086.
LI Lei, KANG Weimin, CHENG Bowen, et al. Preparation and characterization of alumina fiber via solution blowing method[J]. Journal of Functional Materials, 2014, 45(13): 13082-13086.
[19] YU Q, QIN Y, HAN M, et al. Preparation and characterization of solvent-free fluids reinforced and plasticized polylactic acid fibrous membrane[J]. International Journal of Biological Macromolecules, 2020, 161: 122-131.
doi: S0141-8130(20)33467-X pmid: 32512100
[20] 杨晓宇, 任欢欢, 黄玉龙, 等. 聚乙二醇改性聚乳酸/乙酰柠檬酸三丁酯复合薄膜的结构及性能[J]. 中国塑料, 2018, 32(7): 126-131.
YANG Xiaoyu, REN Huanhuan, HUANG Yulong, et al. Structure and properties of poly(lacticacid)/acetyltributyl citrate blend films modified with poly(ethylene glycol)[J]. China Plastics, 2018, 32(7): 126-131.
[21] 魏玉鹏, 赵飞云, 冯绍晨, 等. 十二烷基硫酸钠对溶液燃烧合成多孔Co3O4粉体形貌及磁学性能的影响[J]. 材料科学与工程学报, 2021, 39(6): 943-947.
WEI Yupeng, ZHAO Feiyun, FENG Shaochen, et al. Effect of sodium dodecyl sulfate on morphology and magnetic properties of porous Co3O4 powder synthesized by solution combustion[J]. Journal of Materials Science and Engineering, 2021, 39(6): 943-947.
[22] 赵中国, 张鑫, 程少华, 等. 高熔体强度聚乳酸的结晶和发泡性能[J]. 材料导报, 2020, 34(20):20182-20186.
ZHAO Zhongguo, ZHANG Xin, CHENG Shaohua, et al. Crystallization and foaming properties of high-melt-strength poly(lactic acid)[J]. Materials Reports, 2020, 34(20):20182-20186.
[23] 杨自强, 张恒, 甘益, 等. 一种兼具韧性和导液性的聚乳酸超细纤维非织造材料及其制备方法和应用: 202211528125.2[P]. 2023-03-07.
YANG Ziqiang, ZHANG Heng, GAN Yi, et al. A polylactic acid micro-nanofibrous nonwoven with both toughness and fluid conductivity, its preparation method and application: 202211528125.2[P]. 2023-03-07.
[24] 孙焕惟. 聚乳酸非织造材料的后牵伸辅助熔喷成型工艺及其增韧机理研究[D]. 郑州: 中原工学院, 2022:29-30.
SUN Huanwei. Research on post-drafting assisted melt blown process and toughening mechanism of polylactic acid nonwovens[D]. Zhengzhou: Zhong Yuan University of Technology, 2022: 29-30.
[25] CAI Y, LV J, FENG J. Spectral characterization of four kinds of biodegradable plastics: poly(lactic acid), poly (butylenes adipate-co-terephthalate), poly-(hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with FTIR and Raman spectroscopy[J]. Journal of Polymers and the Environment, 2013, 21: 108-114.
doi: 10.1007/s10924-012-0534-2
[26] 王镕琛, 张恒, 翟倩, 等. 仿生高取向结构聚乳酸/聚乙二醇/十二烷基硫酸钠熔喷非织造材料的原位牵伸制备及定向导液特性[J]. 高分子材料科学与工程, 2023, 39(5):134-144.
WANG Rongchen, ZHANG Heng, ZHAI Qian, et al. Preparation and liquid directional transport properties of the biomimetic oriented PLA/PEG/SDS melt blown nonwovens via in-situ drafting process[J]. Polymer material Science & Engineering, 2023, 39(5): 134-144.
[1] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[2] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[3] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[4] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[5] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[6] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[7] 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40.
[8] 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49.
[9] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[10] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[11] 秦益民. 含锌和含铜医用敷料的研究进展[J]. 纺织学报, 2023, 44(05): 213-219.
[12] 杨汉彬, 张圣明, 吴宇豪, 王朝生, 王华平, 吉鹏, 杨建平, 张体健. 聚酰胺6基弹性纤维的制备及其结构与性能[J]. 纺织学报, 2023, 44(03): 1-10.
[13] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[14] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[15] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!