纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 184-190.doi: 10.13475/j.fzxb.20220807907
XIAO Ming, HUANG Liang, LUO Longyong, BI Shuguang(), RAN Jianhua
摘要:
为解决防伪技术中荧光织物制备方法复杂和成本高的问题,采用分散聚合法制备表面带有负电荷的羧基化聚苯乙烯微球(CPS),再以阳离子表面活性剂十八烷基三甲基溴化铵为改性剂,利用静电自组装法吸附荧光染料异硫氰酸荧光素(FITC),制备羧基化聚苯乙烯荧光微球(CPS-FITC),最后将其负载于织物上制备荧光织物。结果表明:所制备的荧光微球和荧光织物在紫外灯(365 nm)下具有明亮的黄绿色荧光,且放置不同时间(1~9 d)、在不同的pH值(3~11)下,经多次摩擦和水洗后均能保持良好的荧光稳定性。该制备方法操作简便、成本低且荧光强度高,可用于不同织物的防伪检测。
中图分类号:
[1] |
ARPPE Riikka, SRENSEN Thomas Just. Physical unclonable functions generated through chemical methods for anti-counterfeiting[J]. Nature Reviews Chemistry, 2017. DOI:10.1038/s41570-017-0031.
doi: 10.1038/s41570-017-0031 |
[2] |
LIU Yang, HAN Fei, LI Fushan, et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication[J]. Nature Communications, 2019.DOI:10.1038/s41467-019-10406-7.
doi: 10.1038/s41467-019-10406-7 |
[3] |
ALDHOUS Peter. Murder by medicine[J]. Nature, 2005, 434(7030): 132-134.
doi: 10.1038/434132a |
[4] |
YANG Xin, ZHANG Xu, GUAN Qingbao, et al. Biomimetic multifunctional E-skins integrated with mechanoluminescence and chemical sensing abilities[J]. Journal of Materials Chemistry C, 2021, 9(8): 2815-2822.
doi: 10.1039/D0TC05499B |
[5] |
ZUO Yong, XU Xiaojie, TAO Xin, et al. A novel information storage and visual expression device based on mechanoluminescence[J]. Journal of Materials Chemistry C, 2019, 7(14): 4020-4025.
doi: 10.1039/c9tc00641a |
[6] |
SAAD Fredi, BAFFOUN Ayda, MAHLTIG Boris, et al. Polyester fabric with fluorescent properties using microwave technology for anti-counterfeiting applica-tions[J]. Journal of Fluorescence, 2022, 32(1): 327-345.
doi: 10.1007/s10895-021-02845-7 |
[7] |
NELSON Gordon. Application of microencapsulation in textiles[J]. International Journal of Pharmaceutics, 2002, 242(1): 55-62.
doi: 10.1016/S0378-5173(02)00141-2 |
[8] |
HAN Yingdong, GAO Chao, WANG Yangbo, et al. Spatially confined luminescence process in tip-modified heterogeneous-structured microrods for high-level anti-counterfeiting[J]. Physical Chemistry Chemical Physics, 2018, 20(14): 9516-9522.
doi: 10.1039/C8CP00363G pmid: 29570204 |
[9] |
SONG Bin, WANG Houyu, ZHONG Yiling, et al. Fluorescent and magnetic anti-counterfeiting realized by biocompatible multifunctional silicon nanoshuttle-based security ink[J]. Nanoscale, 2018, 10(4): 1617-1621.
doi: 10.1039/c7nr06337g pmid: 29327009 |
[10] |
CHEN Xi, WANG Qi, WANG Xiaoju, et al. Synthesis and performance of ZnO quantum dots water-based fluorescent ink for anti-counterfeiting applications[J]. Scientific Reports, 2021.DOI:10.1038/s41598-021-85468-z.
doi: 10.1038/s41598-021-85468-z |
[11] |
GAO Zhenhua, WEI Cong, YAN Yongli, et al. Covert photonic barcodes based on light controlled acidichromism in organic dye doped whispering-gallery-mode microdisks[J]. Advanced Materials, 2017.DOI:10.1002/adma.201701558.
doi: 10.1002/adma.201701558 |
[12] |
GAO Dangli, GAO Jie, GAO Feng, et al. Quintuple-mode dynamic anti-counterfeiting using multi-mode persistent phosphors[J]. Journal of Materials Chemistry C, 2021, 9(46): 16634-16644.
doi: 10.1039/D1TC04568G |
[13] |
SONG Zhiping, LIN Tianran, LIN Lihuai, et al. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots[J]. Angewandte Chemie International Edition, 2016, 55(8): 2773-2777.
doi: 10.1002/anie.201510945 |
[14] |
SINGH Vikram, GORBEL B, CHATTERJEE Shovon, et al. Green, economical synthesis of nitrogen enriched carbon nanoparticles from seaweed extract and their application as invisible ink and fluorescent film[J]. Materials Letters, 2022.DOI: 10.1016/j.matlet.2021.131446.
doi: 10.1016/j.matlet.2021.131446 |
[15] |
ABDOLLAHI Amin, ALIDAEI-SHARIF Hossein, ROGHANI-Mamaqani Hossein, et al. Photoswitchable fluorescent polymer nanoparticles as high-security anticounterfeiting materials for authentication and optical patterning[J]. Journal of Materials Chemistry C, 2020, 8(16): 5476-5493.
doi: 10.1039/D0TC00937G |
[16] |
ABDOLLAHI Amin, ROGHANI-MAMAQANI Hossein, HERIZCHI Ata, et al. Light-induced spherical to dumbbell-like morphology transition of coumarin-functionalized latex nanoparticles by a [2π + 2π] cycloaddition reaction: a fast and facile strategy to anisotropic geometry[J]. Polymer Chemistry, 2020, 11(12): 2053-2069.
doi: 10.1039/D0PY00078G |
[17] |
BAATOUT Khouloud, SAAD Fredj, BAFFOUN Ayda, et al. Luminescent cotton fibers coated with fluorescein dye for anti-counterfeiting applications[J]. Materials Chemistry and Physics, 2019, 234: 304-310.
doi: 10.1016/j.matchemphys.2019.06.007 |
[18] |
YANG Hongbin, HU Lelei, CHEN Chao, et al. Influence mechanism of fluorescent monomer on the performance of polymer microspheres[J]. Journal of Molecular Liquids, 2020.DOI: 10.1016/j.molliq.2020.113081.
doi: 10.1016/j.molliq.2020.113081 |
[1] | 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92. |
[2] | 房宽峻 刘代明 蔡玉青. Gemini型阳离子表面活性剂与铜酞菁染料的相互作用[J]. 纺织学报, 2013, 34(1): 66-71. |
|