纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 113-119.doi: 10.13475/j.fzxb.20220808001
JIA Liping, LI Ming, LI Weilong, RAN Jianhua, BI Shuguang(), LI Shiwei
摘要:
针对柔性应变传感器目前存在的灵敏度低、应变范围窄、反复拉伸后性能不稳定、功能单一等问题,采用预拉伸浸渍法以商用弹性包芯纱为柔性基体、水性聚氨酯(WPU)为分散剂和黏合剂、长银纳米线(AgNWs)为导电材料制备了具有应变传感与电热双功能的包芯纱。借助X射线衍射仪、扫描电子显微镜、数字万用表、万能试验机、菲力尔热像仪对AgNWs的晶体结构及双功能包芯纱的形貌结构、电学性能、力学性能、电热性能进行表征和分析。结果表明:当弹性包芯纱的预拉伸应变量为30%且AgNWs的负载量为15%时,制备的双功能包芯纱的鞘层棉纤维上形成了致密的AgNWs导电网络;在宽应变范围(0%~70%)内呈现明显的应变传感性能,灵敏度最高可达12.8,反复拉伸后的应变传感和力学性能稳定;在手指的运动监测中,手指发生小幅度和大幅度的弯曲变化,双功能包芯纱均能做出相应的电信号响应,体现了高灵敏度;5 V电压下,静态拉伸范围为0%~50%时,双功能包芯纱的温度变化范围为49.8~65.7 ℃,体现了优异的电热性能。
中图分类号:
[1] |
SEYEDIN S, ZHANG P, NAEBE M, et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications[J]. Materials Horizons, 2019, 6(2): 219-49.
doi: 10.1039/C8MH01062E |
[2] | YAO S, MYERS A, MALHOTRA A, et al. A wearable hydration sensor with conformal nanowire elec-trodes[J]. Advanced Healthcare Materials, 2017, 6(6): 27695. |
[3] | LA T G, QIU S, SCOTT D K, et al. Two-layered and stretchable e-textile patches for wearable healthcare electronics[J]. Advanced Healthcare Materials, 2018. DOI: 10.1002/adhm.201801033. |
[4] | WANG L, FU X, HE J, et al. Application challenges in fiber and textile electronics[J]. Advanced Materials, 2020, 32(5): 1-25. |
[5] | CHEN L Y, TEE B C, CHORTOS A L, et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care[J]. Nature Communications, 2014. DOI: 10.1038/ncomms6028. |
[6] | DAGDEVIREN C, SU Y, JOE P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monito-ring[J]. Nature Communications, 2014. DOI: 10.1038/ncomms5496. |
[7] |
WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9): 1336-1342.
doi: 10.1002/adma.v26.9 |
[8] |
ZANG Y, ZHANG F, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
doi: 10.1039/C4MH00147H |
[9] |
ZHU G J, REN P G, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Appl Mater Interfaces, 2019, 11(26): 23649-23658.
doi: 10.1021/acsami.9b08611 |
[10] | CAI G, HAO B, LUO L, et al. Highly stretchable sheath-core yarns for multifunctional wearable elec-tronics[J]. ACS Appl Mater Interfaces, 2020, 12(26): 29717-29727. |
[11] |
CAI G, YANG M, PAN J, et al. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications[J]. ACS Appl Mater Interfaces, 2018, 10(38): 32726-32735.
doi: 10.1021/acsami.8b11885 |
[12] |
YAO H B, GE J, WANG C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. Advanced Materials, 2013, 25(46): 6692-6698.
doi: 10.1002/adma.v25.46 |
[13] | GURARSLAN A, ÖZDEMIR B, BAYAT İ H, et al. Silver nanowire coated knitted wool fabrics for wearable electronic applications[J]. Journal of Engineered Fibers and Fabrics, 2019. DOI: 10.1177/1558925019856222. |
[14] |
WEI Y, CHEN S, DONG X, et al. Flexible piezoresistive sensors based on "dynamic bridging effect" of silver nanowires toward graphene[J]. Carbon, 2017, 113: 395-403.
doi: 10.1016/j.carbon.2016.11.027 |
[15] |
CHEN S, WEI Y, YUAN X, et al. A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich struc-ture[J]. Journal of Materials Chemistry C, 2016, 4(19): 4304-4311.
doi: 10.1039/C6TC00300A |
[16] | HA H, AMICUCCI C, MATTEINI P, et al. Mini review of synthesis strategies of silver nanowires and their applications[J]. Colloid and Interface Science Communications, 2022. DOI: 10.1016/j.colcom.2022.100663. |
[17] | FU D, YANG R, WANG Y, et al. Silver nanowire synthesis and applications in composites: progress and prospects[J]. Advanced Materials Technologies, 2022. DOI: 10.1002/admt.202200027. |
[1] | 张华, 刘帅, 杨瑞华. 长丝包覆复合包芯纱拉伸性能建模研究[J]. 纺织学报, 2023, 44(08): 57-62. |
[2] | 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221. |
[3] | 王开, 王瑾, 牛丽, 陈超余, 马丕波. 棉/不锈钢丝包芯纱针织电路制备及其导电稳定性能[J]. 纺织学报, 2023, 44(07): 64-71. |
[4] | 徐瑞东, 刘红, 王航, 朱士凤, 曲丽君, 田明伟. 离子型水凝胶复合织物构筑及其应变传感性能[J]. 纺织学报, 2023, 44(06): 137-143. |
[5] | 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56. |
[6] | 付驰宇, 徐傲, 齐硕, 王凯, 缪莹, 尚路路, 夏治刚. 形状记忆合金复合纱线及其面料驱动性能[J]. 纺织学报, 2023, 44(06): 91-97. |
[7] | 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66. |
[8] | 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33. |
[9] | 李龙, 吴磊, 林思伶. 捻度对棉/氨纶/银丝包芯纱性能的影响[J]. 纺织学报, 2023, 44(01): 100-105. |
[10] | 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118. |
[11] | 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205. |
[12] | 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33. |
[13] | 姚明远, 刘宁娟, 王嘉宁, 许福军, 刘玮. 功能化碳纳米管复合薄膜及其膜卷纱的电热性能[J]. 纺织学报, 2022, 43(05): 86-91. |
[14] | 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
[15] | 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16. |
|