纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 120-125.doi: 10.13475/j.fzxb.20220809901
王晓萌1, 李婷婷1,2(), 许炳铨3, 林佳弘1,4,5, 楼静文1,6,7
WANG Xiaomeng1, LI Tingting1,2(), SHIU Bingchiuan3, LIN Jiahorng1,4,5, LOU Chingwen1,6,7
摘要:
为制备日间可自加热且防火性能优异的多功能光热阻燃织物,采用聚多巴胺修饰的芳砜纶非织造布作为亲水基材,Fe3O4作为光热功能材料,聚磷酸铵(APP)作为阻燃功能材料,通过浸渍将共沉淀法制备的Fe3O4微球借助黏性聚磷酸铵对其包裹功能涂层得到多功能阻燃光热织物。借助扫描电子显微镜、傅里叶变换红外光谱仪、时间-温度曲线以及点燃实验对光热阻燃织物的结构和性能进行表征,并观察织物在酸碱溶液放置后的形态以表征阻燃光热织物的耐用性。结果表明,光热阻燃织物在保持良好柔韧性的情况下,兼具Fe3O4优异的光热性能和APP的阻燃性能,在日间可升温至60 ℃以上,初遇火焰时难燃,12 s后离开火源织物自熄,并且在酸碱环境下仍保持良好的形态及耐用性。
中图分类号:
[1] | HSU P C, LIU X, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2015, 15 (1) :365-371. |
[2] |
LIU Z, LÜ J, FANG D, et al. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano, 2019, 13(5):5703-5711.
doi: 10.1021/acsnano.9b01094 pmid: 31042355 |
[3] | ZHANG X, WANG X, LEI Z, et al. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, rlectromagnetic interference shielding, and strain sensing performances[J]. ACS Applied Matertials Interfaces, 2020, 12:14459-14567. |
[4] | ZHANG H, ZHANG G, LI J, et al. Lightweight, multifunctional microcellular PMMA/Fe3O4 @MWCNTs nanocomposite foams with efficient electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100:128-138. |
[5] | WANG Y, PENG H K, LI T T, et al. Layer-by-layer assembly of low-temperature in-situ polymerized pyrrole coated nanofiber membrane for high-efficiency electromagnetic interference shielding[J]. Progress In Organic Coatings, 2020. DOI:10.1016/j.porgcoat.2020.105861. |
[6] | LI Y, MA W, KWON Y S, et al. Solar deicing nanocoatings adaptive to overhead power lines[J]. Advanced Functional Materials, 2022. DOI:10.1002/adfm.202113297. |
[7] | ZHANG Y, TIAN W, LIU L, et al. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings[J]. Chemical Engineering Journal, 2019, 372:1077-1090. |
[8] | CHENG W, ZHANG Y, TIAN W, et al. Highly efficient MXene-coated flame retardant cotton fabric for electromagnetic interference shielding[J]. Industrial Engineering Chemistry Research, 2020.DOI:10.1021/acs.iecr.Oc02618. |
[9] | LI Z, CHEN M, LI S, et al. Simultaneously improving the thermal, flame-retardant and mechanical properties of epoxy resins modified by a novel multi-element synergistic flame retardant[J]. Macromolecular Materials and Engineering, 2019. DOI:10.1002/mame.201800619. |
[10] |
CHENG W, ZHANG Y, TAO Y, et al. Durable electromagnetic interference (EMI) shielding ramie fabric with excellent flame retardancy and self-healing performance[J]. Journal of Colloid and Interface Science, 2021, 602:810-821.
doi: 10.1016/j.jcis.2021.05.159 pmid: 34157516 |
[11] | LI T, WANG Y, PENG H, et al. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020. DOI: 10.1016/j.compositesa.2019.105685. |
[12] | WANG Yanting, PENG Haokai, LI Tingting, et al. MXene-coated conductive composite film with ultrathin, flexible, self-cleaning for high-performance electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.128681. |
[13] | ZHANG T, LÜ D, LIU R, et al. Developing a superhydrophobic absorption-dominated electromagnetic shielding material by building clustered Fe3O4 nanoparticles on the copper-coated cellulose paper[J]. ACS Sustainable Chemistry Engineering, 2021, 9(19):6574-6585. |
[14] | HU L, KANG Z. Enhanced flexible polypropylene fabric with silver/magnetic carbon nanotubes coatings for electromagnetic interference shielding[J]. Applied Surface Science, 2021. DOI: 10.1016/j.apsusc.2021.150845. |
[15] | CHU F, HOU Y, LIU L, et al. Hierarchical structure: an effective strategy to enhance the mechanical performance and fire safety of unsaturated polyester resin[J]. ACS Applied Materials Interfaces, 2019, 11(32):29436-29447. |
[16] | LI T, WANG X, WANG Y, et al. Silve coating conductive composite fabric with flexible, anti-flaming for electromagnetic interference shielding[J]. Journal of Applied Polymer Science, 2022. DOI: 10.1002/app.51875. |
[17] | ZHOU Z, SONG Q, HUANG B, et al. Facile fabrication of densely Packed Ti3C2MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance[J]. ACS Nano, 2021,15: 12405-12417. |
[1] | 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113. |
[2] | 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82. |
[3] | 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163. |
[4] | 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96. |
[5] | 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119. |
[6] | 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166. |
[7] | 周存 何雅僖. 超疏水导电聚酯织物的制备及其性能[J]. 纺织学报, 2018, 39(08): 88-94. |
[8] | 张广知 黄小华. 纯棉篷盖布涂料染色拒水拒油阻燃复合涂层[J]. 纺织学报, 2013, 34(2): 125-128. |
|