纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 120-125.doi: 10.13475/j.fzxb.20220809901

• 染整工程 • 上一篇    下一篇

耐用多功能光热阻燃织物的制备及应用

王晓萌1, 李婷婷1,2(), 许炳铨3, 林佳弘1,4,5, 楼静文1,6,7   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进复合材料教育部重点实验室, 天津 300387
    3.闽江学院 材料与化学工程学院, 福建 福州 350108
    4.逢甲大学 纤维与复合材料系, 台湾 407102
    5.中国医药大学 中医学系, 台湾 404333
    6.亚洲大学 生物信息与医学工程学系, 台湾 413305
    7.中国医药大学 附属医院医学研究部, 台湾 404333
  • 收稿日期:2022-08-22 修回日期:2023-01-18 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 李婷婷(1985—),女,副教授。主要研究方向为防护与生物医用复合材料结构设计与开发。E-mail:tingtingli@tiangong.edu.cn。
  • 作者简介:王晓萌(1998—),女,博士生。主要研究方向为热管理/电磁屏蔽防护纺织品的结构设计与开发。
  • 基金资助:
    国家自然科学基金项目(11702187)

Preparation and application of durable and multifunctional photothermal flame retardant fabrics

WANG Xiaomeng1, LI Tingting1,2(), SHIU Bingchiuan3, LIN Jiahorng1,4,5, LOU Chingwen1,6,7   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
    3. College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
    4. Department of Fiber and Composite Materials, Feng Chia University, Taiwan 407102, China
    5. School of Chinese Medicine, China Medical University, Taiwan 404333, China
    6. Department of Bioinformatics and Medical Engineering, Asia University, Taiwan 413305, China
    7. Department of Medical Research, Medical University Hospital, China Medical University, Taiwan 404333, China
  • Received:2022-08-22 Revised:2023-01-18 Published:2024-04-15 Online:2024-05-13

摘要:

为制备日间可自加热且防火性能优异的多功能光热阻燃织物,采用聚多巴胺修饰的芳砜纶非织造布作为亲水基材,Fe3O4作为光热功能材料,聚磷酸铵(APP)作为阻燃功能材料,通过浸渍将共沉淀法制备的Fe3O4微球借助黏性聚磷酸铵对其包裹功能涂层得到多功能阻燃光热织物。借助扫描电子显微镜、傅里叶变换红外光谱仪、时间-温度曲线以及点燃实验对光热阻燃织物的结构和性能进行表征,并观察织物在酸碱溶液放置后的形态以表征阻燃光热织物的耐用性。结果表明,光热阻燃织物在保持良好柔韧性的情况下,兼具Fe3O4优异的光热性能和APP的阻燃性能,在日间可升温至60 ℃以上,初遇火焰时难燃,12 s后离开火源织物自熄,并且在酸碱环境下仍保持良好的形态及耐用性。

关键词: 光热阻燃织物, 聚多巴胺, 自供暖, 耐用性, 功能涂层

Abstract:

Objective In order to maintain human body temperature in harsh cold environments, there is a need for green and safe photothermal conversion textiles to convert renewable free solar energy into heat to obtain safe and efficient personal heating materials for human body heat management. At the same time, there is also a need for fire retardant properties in order to prevent fire emergencies during the photothermal conversion process. Therefore, it is of great practical importance to prepare photothermal flame retardant fabrics that can be used for long-term service.

Method Herein, to prepare multifunctional photothermal flame retardant fabrics that can be self-heated during daytime and have excellent fire resistance, polydopamine (PDA)-assisted aramid (PSA) nonwoven fabrics were used as hydrophilic substrates, Fe3O4 as the photothermal functional material and ammonium polyphosphate (APP) as the flame retardant functional material. The multifunctional flame retardant photothermal fabric obtained by wrapping the Fe3O4 microspheres prepared by co-precipitation method with the help of viscous ammonium polyphosphate APP with a functional coating using simple impregnation. The structure and properties of the flame retardant photothermal fabric were characterized by means of scanning electron microscopy, Fourier transform infrared spectroscopy, time-temperature curves and ignition experiments, and the durability of the flame retardant photothermal fabric was characterized by observing the fabric morphology before and after placement in acid and alkali solutions.

Results After the PDA treatment, the fabric surface became rougher, providing more active sites and allowing Fe3O4 and APP to be fully loaded on the fabric surface. The characteristic peaks belonging to PDA are still present in addition to those of Fe3O4, indicating that Fe3O4 does not change the original structure of the PSA nonwoven fabric. The temperature change of PSA/PDA fabric and PSA/Fe3O4/APP fabric within 720 s of IR light irradiation. It can be seen that compared to the dopamine treated fabric which warmed up to 49.2 ℃, the PSA/Fe3O4/APP fabric can rise from 27 ℃ to 63.2 ℃ in the same period, indicating that the PSA/Fe3O4/APP fabric had excellent photothermal. It showed that PSA/Fe3O4/APP fabric has excellent photothermal conversion ability and Fe3O4 played a major positive role in photothermal conversion. The temperature change of the PSA/Fe3O4/APP fabric over five cycles, demonstrating the recyclability of the fabric's photothermal response, which would help extend the practical application of self-heating garments. A digital image of the fabric during simulated vertical combustion showed that the fabric was not easily ignited and was self-extinguishing after leaving the fire source. The SEM image of the PSA/Fe3O4/APP fabric after combustion clearly showed the fibre and charcoal layer structure, indicating that the functional coating formed by Fe3O4 and APP established a physical barrier that isolated heat and oxygen, effectively inhibiting further combustion of the fabric. The fabric did not significantly change the colour in different acid and alkali solutions, indicating that the PSA/Fe3O4/APP fabric has excellent durability and resistance to oxidation.

Conclusion Overall, the photothermal flame retardant fabric combined the excellent photothermal properties of Fe3O4 with the flame retardant properties of APP while maintaining the good flexibility of the fabric, which can heat up to over 60 ℃ in daytime, was difficult to ignite when first encountered with flame, and the fabric was self-extinguishing after 12 s away from the fire source, and the fabric still maintained good form in acidic and alkaline environments. This lightweight, soft, durable and versatile photothermal flame retardant fabric showed its potential application in harsh environments as a smart wearable, self-heating garment.

Key words: flame retardant photothermal fabric, polydopamine, self-heating, durability, functional coating

中图分类号: 

  • TQ342.83

图1

PSA、PSA/PDA和PSA/Fe3O4/APP织物表面的扫描电镜照片"

图2

PSA/PDA织物和PSA/Fe3O4/APP织物的傅里叶红外光谱图"

图3

PSA/PDA织物和PSA/Fe3O4/APP织物在720 s 内的温度变化曲线"

图4

PSA/Fe3O4/APP织物的光热循环曲线"

图5

不同织物在12 s内的垂直燃烧实验模拟实时图像"

图6

PSA/Fe3O4/APP织物燃烧后的SEM照片"

图7

PSA/Fe3O4/APP 织物在不同溶剂中浸泡12 h的变化"

[1] HSU P C, LIU X, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2015, 15 (1) :365-371.
[2] LIU Z, LÜ J, FANG D, et al. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano, 2019, 13(5):5703-5711.
doi: 10.1021/acsnano.9b01094 pmid: 31042355
[3] ZHANG X, WANG X, LEI Z, et al. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, rlectromagnetic interference shielding, and strain sensing performances[J]. ACS Applied Matertials Interfaces, 2020, 12:14459-14567.
[4] ZHANG H, ZHANG G, LI J, et al. Lightweight, multifunctional microcellular PMMA/Fe3O4 @MWCNTs nanocomposite foams with efficient electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100:128-138.
[5] WANG Y, PENG H K, LI T T, et al. Layer-by-layer assembly of low-temperature in-situ polymerized pyrrole coated nanofiber membrane for high-efficiency electromagnetic interference shielding[J]. Progress In Organic Coatings, 2020. DOI:10.1016/j.porgcoat.2020.105861.
[6] LI Y, MA W, KWON Y S, et al. Solar deicing nanocoatings adaptive to overhead power lines[J]. Advanced Functional Materials, 2022. DOI:10.1002/adfm.202113297.
[7] ZHANG Y, TIAN W, LIU L, et al. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings[J]. Chemical Engineering Journal, 2019, 372:1077-1090.
[8] CHENG W, ZHANG Y, TIAN W, et al. Highly efficient MXene-coated flame retardant cotton fabric for electromagnetic interference shielding[J]. Industrial Engineering Chemistry Research, 2020.DOI:10.1021/acs.iecr.Oc02618.
[9] LI Z, CHEN M, LI S, et al. Simultaneously improving the thermal, flame-retardant and mechanical properties of epoxy resins modified by a novel multi-element synergistic flame retardant[J]. Macromolecular Materials and Engineering, 2019. DOI:10.1002/mame.201800619.
[10] CHENG W, ZHANG Y, TAO Y, et al. Durable electromagnetic interference (EMI) shielding ramie fabric with excellent flame retardancy and self-healing performance[J]. Journal of Colloid and Interface Science, 2021, 602:810-821.
doi: 10.1016/j.jcis.2021.05.159 pmid: 34157516
[11] LI T, WANG Y, PENG H, et al. Lightweight, flexible and superhydrophobic composite nanofiber films inspired by nacre for highly electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020. DOI: 10.1016/j.compositesa.2019.105685.
[12] WANG Yanting, PENG Haokai, LI Tingting, et al. MXene-coated conductive composite film with ultrathin, flexible, self-cleaning for high-performance electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.128681.
[13] ZHANG T, LÜ D, LIU R, et al. Developing a superhydrophobic absorption-dominated electromagnetic shielding material by building clustered Fe3O4 nanoparticles on the copper-coated cellulose paper[J]. ACS Sustainable Chemistry Engineering, 2021, 9(19):6574-6585.
[14] HU L, KANG Z. Enhanced flexible polypropylene fabric with silver/magnetic carbon nanotubes coatings for electromagnetic interference shielding[J]. Applied Surface Science, 2021. DOI: 10.1016/j.apsusc.2021.150845.
[15] CHU F, HOU Y, LIU L, et al. Hierarchical structure: an effective strategy to enhance the mechanical performance and fire safety of unsaturated polyester resin[J]. ACS Applied Materials Interfaces, 2019, 11(32):29436-29447.
[16] LI T, WANG X, WANG Y, et al. Silve coating conductive composite fabric with flexible, anti-flaming for electromagnetic interference shielding[J]. Journal of Applied Polymer Science, 2022. DOI: 10.1002/app.51875.
[17] ZHOU Z, SONG Q, HUANG B, et al. Facile fabrication of densely Packed Ti3C2MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance[J]. ACS Nano, 2021,15: 12405-12417.
[1] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[2] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[3] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[4] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[5] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[6] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[7] 周存 何雅僖. 超疏水导电聚酯织物的制备及其性能[J]. 纺织学报, 2018, 39(08): 88-94.
[8] 张广知 黄小华. 纯棉篷盖布涂料染色拒水拒油阻燃复合涂层[J]. 纺织学报, 2013, 34(2): 125-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!