纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 222-229.doi: 10.13475/j.fzxb.20220810308

• 染整与化学品 • 上一篇    下一篇

茶多酚基阻燃/防紫外线棉织物的制备及其性能

蒋琦1,2,3,4, 刘云1,2,3,4(), 朱平1,2,3,4   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    3.青岛大学 新型防火阻燃材料开发与应用国家地方联合工程研究中心, 山东 青岛 266071
    4.青岛大学 生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 266071
  • 收稿日期:2022-08-22 修回日期:2022-11-17 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 刘云(1982—),女,教授,博士。主要研究方向为功能纤维及纺织品。E-mail:liuyun0215@126.com。
  • 作者简介:蒋琦(1995—),女,硕士生。主要研究方向为功能纤维及纺织品。
  • 基金资助:
    国家自然科学基金重大项目(51991354)

Preparation and properties of flame retardant/anti-ultraviolet cotton fabrics with tea polyphenol based flame retardants

JIANG Qi1,2,3,4, LIU Yun1,2,3,4(), ZHU Ping1,2,3,4   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    3. National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao, Shandong 266071, China
    4. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2022-08-22 Revised:2022-11-17 Published:2023-02-15 Online:2023-03-07

摘要:

针对棉织物极易燃烧且不防紫外线,以及现有应用最广泛的卤系阻燃剂面临诸多限制等问题,采用茶多酚(TP)、 苯基膦酸(PPOA)和硫酸铁(Fe(SO4)3),制备了茶多酚铁苯基膦酸络合物(TP-Fe-PPOA),采用浸渍烘燥法制备了阻燃棉织物,研究了其阻燃、防紫外线、拉伸以及透气性。结果表明:TP-Fe-PPOA能均匀附着在棉织物上,且TP-Fe和PPOA之间有一定的协同作用;TP-Fe-PPOA整理棉织物可实现离火自熄,其损毁长度仅为 6.7 cm, 极限氧指数从17.6%提升至24.7%;TP-Fe-PPOA整理棉织物的最大热释放速率较纯棉织物降低了11.8%,意味着火灾放热强度降低,燃烧反馈给织物的热量越少,减缓了火焰的传播;其防紫外线性能也大幅度提升,紫外线防护系数从纯棉织物的7.47±0.19提升至37.85±2.34,接近防晒产品的要求,在实现阻燃和防紫外线功能的同时,保留了较好的透气性。

关键词: 阻燃, 防紫外线性能, 棉织物, 茶多酚铁苯基膦酸络合物, 浸渍法

Abstract:

Objective Cotton fabrics are one of the most important textiles; they are widely used in clothing, furniture, and decoration. However, cotton fabrics have a low limiting oxygen index (LOI) of only 17%, and they are highly flammable, which is easy to cause fire accidents. Meanwhile, the most widely used existing halogen-containing flame retardants are facing many restrictions due to the generation of halogenated hydrocarbons during burning. In addition, cotton fabrics have poor anti-ultraviolet (UV) properties and cannot protect the skin from UV damage. Therefore, it is necessary to design an additive to improve the flame retardancy of cotton fabrics with the anti-UV properties.
Method Tea polyphenols (TP), phenyl phosphonic acid (PPOA) and iron (Ⅲ) sulfate hydrate(Fe(SO4)3) were selected to prepare tea polyphenols-iron-phenyl phosphonic acid complex (named TP-Fe-PPOA). Phosphoric acid or polyphosphoric acid produced by the thermal degradation of PPOA are known to be able to promote char formation of materials, and TP generates free radicals and slows down burning. The benzene ring absorbs UV light and improves the anti-UV properties of fabrics. Flame retardant cotton fabrics were prepared by the dip-coating technology, and the flame retardant, anti-UV and mechanical properties were investigated by limiting oxygen index evaluation, vertical flame tests (VFT), cone calorimetry test (CCT), anti-UV performance test and universal testing machine.
Results Test results show that TP-Fe-PPOA was evenly adhered to the surface of cotton fabrics (Fig. 1). There is a synergistic effect between TP-Fe and PPOA. Cotton/TP-Fe cannot achieve self-extinguishing(as shown in Fig. 5 and Tab. 3). There is a serious phenomenon of negative burning, and the cotton fabrics are completely destroyed in VFT. Cotton/PPOA slows down the flame spread significantly compared with cotton fabrics. However, the LOI value of Cotton/PPOA is still only 21.9%. When they were treated with TP-Fe-PPOA, cotton fabrics became self-extinguishing, the damage length was only 6.7 cm in VFT, and the LOI increased from 17.6% to 24.7%. Meanwhile, the peak heat release rate value of Cotton/TP-Fe-PPOA was 11.8% lower than that of cotton fabrics(Fig. 6 and Tab. 4). The results indicated that after the flame retardant treatment, smoke release was effectively mitigated. The smoke production rate value of flame retardant fabrics was smaller than that of cotton fabrics, and the total smoke production value was also significantly reduced, which can greatly reduce the probability of death by asphyxiation in a fire. Moreover, the cotton fabrics left almost no char residues after CCT, while Cotton/TP-Fe-PPOA left more compact char residues(Fig. 8). These char residues act as a barrier to slow down the transfer of heat, oxygen, combustible gases and smoke, protecting the underlying fabrics. Fortunately, while achieving the flame retardant and anti-UV properties, the air permeability of Cotton/TP-Fe-PPOA was decreased by only 13.1% (Fig. 9). However, the mechanical properties of the flame retardant cotton fabrics were deteriorated severely due to the acidity of PPOA (Tab. 5). The elongation at break of Cotton/TP-Fe-PPOA in both warp and weft directions was decreased by about 28.8% and 12.6% compared to that of cotton fabrics. In addition, anti-UV was also greatly improved (Tab. 6). The UV protection factor (UPF) of Cotton/ TP-FE-PPOA increased from 7.47±0.19 to 37.85±2.34, which is close to the standard of UPF≥40 for sun protection products.
Conclusion The above results show that TP-Fe-PPOA can make cotton fabrics with better flame retardant effect and better anti-UV properties at the same time. These flame retardant cotton fabrics with anti-UV properties are suitable for use as curtains, which not only meet the needs of flame retardant, but can also block UV light, slow down the aging process of indoor fabrics and protect people from UV light. Unfortunately, the mechanical properties of these flame retardant cotton fabrics are severely lost, especially the loss of tensile strength. Therefore, it is necessary to consider the use of neutral or alkaline additives to reduce the acid brittleness of cotton fabrics in order to retain the original mechanical properties of the fabrics in the future research. Considering that Cotton/PPOA performs well in VFT and LOI, it can be concluded that phosphorus-containing flame retardants have good effects on improving the flame retardant properties of cotton fabrics. Therefore, PPOA can be replaced with less acidic phosphorus-containing flame retardants or the acidity of PPOA can be reduced through the reaction to achieve the purpose of reducing the loss of mechanical properties of flame retardant fabrics.

Key words: flame retardant, anti-ultraviolet property, cotton fabric, tea polyphenols-iron-phenyl phosphonic acid complex, dip-coating technology

中图分类号: 

  • TS195.2

图1

纯棉织物与阻燃棉织物的SEM照片"

图2

Cotton/TP-Fe-PPOA的表面元素分布图(×100)"

图3

纯棉织物与阻燃棉织物在氮气氛围下TG和DTG曲线"

表1

纯棉织物与阻燃棉织物在氮气氛围下TG和DTG数据"

样品名称 T5%/
Tmax/
Rmax/
(%·min-1)
700 ℃时
残炭量/%
Cotton 323 351 28.0 8.3
Cotton/PPOA 218 272 11.9 26.5
Cotton/TP-Fe 274 312 14.2 7.0
Cotton/TP-Fe-PPOA 210 263 11.5 29.6

图4

纯棉织物与阻燃棉织物在空气氛围下TG和DTG曲线"

表2

纯棉织物与阻燃棉织物在空气氛围下TG和DTG数据"

样品
名称
T5%/
Tmax1/
Rmax1/
(%·min-1)
Tmax2/
Rmax2/
(%·min-1)
700 ℃
时残炭
量/%
Cotton 284 334 35.3 469 1.9 0.7
Cotton/PPOA 208 254 11.7 536 1.8 8.6
Cotton/TP-Fe 265 304 17.9 451 1.9 0.7
Cotton/TP-
Fe-PPOA
201 256 10.9 539 2.0 5.0

图5

纯棉织物与阻燃棉织物垂直燃烧后的数码照片和SEM照片"

表3

纯棉织物与阻燃棉织物垂直燃烧和极限氧指数测试结果"

样品名称 质量增
加率/%
续燃时
间/s
阴燃时
间/s
损毁长
度/cm
LOI值/
%
Cotton 0 7±2 8±3 ≥30 17.6
Cotton/PPOA 14.3±1.0 0 0 11.3±3.1 21.9
Cotton/TP-Fe 14.8±0.8 3±2 31±15 ≥30 18.4
Cotton/TP-Fe-PPOA 14.5±0.9 0 0 6.7±1.2 24.7

图6

纯棉织物与阻燃棉织物的THR和HRR曲线"

表4

纯棉织物与阻燃棉织物锥形量热测试结果"

样品名称 TTI/s PHRR/
(kW·m-2)
TPHRR/
s
THR/
(MJ·m-2)
TSP/
m2
Cotton 28 127 45 4.9 0.5
Cotton/PPOA 14 120 30 4.7 0.0
Cotton/TP-Fe 13 124 35 5.7 0.0
Cotton/TP-Fe-PPOA 13 112 30 5.9 0.2

图7

纯棉织物与阻燃棉织物的TSP、SPR、CO2P和COP曲线"

图8

纯棉织物与阻燃棉织物的残炭照片"

图9

纯棉织物与阻燃棉织物的透气性能"

表5

纯棉织物与阻燃棉织物经向和纬向的拉伸性能"

样品名称 断裂伸长率/% 断裂强度/MPa
经向 纬向 经向 纬向
Cotton 8.0±0.3 19.0±0.4 19.5±1.5 17.6±1.1
Cotton/PPOA 6.1±0.4 17.0±1.5 8.3±1.0 8.8±1.9
Cotton/TP-Fe 7.1±0.8 19.9±2.8 11.5±2.9 15.1±1.2
Cotton/TP-Fe-PPOA 5.7±0.3 16.6±1.1 8.2±1.0 8.8±1.6

表6

纯棉织物与阻燃棉织物的紫外线透过率和UPF值"

样品名称 透过率/% UPF值
UVA UVB
Cotton 21.3±0.5 27.6±0.7 7.47±0.19
Cotton/PPOA 15.0±1.0 16.4±1.0 12.28±0.80
Cotton/TP-Fe 2.4±0.1 2.6±0.1 66.27±3.53
Cotton/TP-Fe-PPOA 5.3±0.3 5.2±0.3 37.85±2.34
[1] 邢亚林. 聚苯胺和氮化硼协效阻燃棉布的制备及性能研究[J]. 火灾科学, 2021, 30(3): 160-164.
XING Yalin. Preparation and properties of flame retardant cotton with polyaniline and boron nitride[J]. Fire Safety Science, 2021, 30(3): 160-164.
[2] 曾凡鑫, 秦宗益, 沈玥莹, 等. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(1): 103-111.
ZENG Fanxin, QIN Zongyi, SHEN Yueying, et al. Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology[J]. Journal of Textile Research, 2021, 42(1): 103-111.
[3] 邓继勇, 柳芊, 董新理, 等. 新型氮-磷阻燃剂制备及其对棉织物的阻燃性能[J]. 纺织学报, 2017, 38(11): 97-101.
DENG Jiyong, LIU Qian, DONG Xinli, et al. Preparation of a novel N-P flame retardant and its flame retardant properties in cotton fabric[J]. Journal of Textile Research, 2017, 38(11): 97-101.
[4] ZENG S L, XING C Y, CHEN L, et al. Green flame-retardant flexible polyurethane foam based on cyclodextrin[J]. Polymer Degradation and Stability, 2020. DOI:10.1016/j.polymdegradstab.2020.109171.
doi: 10.1016/j.polymdegradstab.2020.109171
[5] 徐英俊, 王芳, 倪延朋, 等. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(2): 1-9.
XU Yingjun, WANG Fang, NI Yanpeng, et al. Research progress on flame-retardation and multi-functionalization of textiles[J]. Journal of Textile Research, 2022, 43(2): 1-9.
doi: 10.1177/004051757304300101
[6] ZHANG Y, JING J, LIU T, et al. A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid)[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.128493.
doi: 10.1016/j.cej.2021.128493
[7] ZHANG F X, GAO W W, JIA Y L, et al. A concise water-solvent synthesis of highly effective, durable, and eco-friendly flame-retardant coating on cotton fabrics[J]. Carbohydrate Polymers, 2018, 199: 256-265.
doi: S0144-8617(18)30639-8 pmid: 30143128
[8] 邓伟浩, 段怡静, 钟菁, 等. 苯基膦酸改性环氧树脂固化物的制备及其阻燃性能[J]. 中原工学院学报, 2021, 32(6): 1-7,13.
DENG Weihao, DUAN Yijing, ZHONG Jing, et al. Preparation and flame-retardant properties of cured epoxy resin modified by phenylphosphonic acid[J]. Journal of Zhongyuan University of Technology, 2021, 32(6): 1-7,13.
[9] YAO F Q, ZHAI C J, WANG H H, et al. Characterization of tea polyphenols as potential environment-friendly fire retardants[J]. IOP Conference Series: Earth and Environmental Science, 2018. DOI:10.1088/1755-1315/121/2/022016.
doi: 10.1088/1755-1315/121/2/022016
[10] SHI Q B, ZHANG H W, ZHANG H P, et al. Polydopamine/silver hybrid coatings on soda-lime glass spheres with controllable release ability for inhibiting biofilm formation[J]. Science China Materials, 2020, 63: 842-850.
doi: 10.1007/s40843-019-1252-6
[11] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(1): 1-8.
LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy[J]. Journal of Textile Research, 2022, 43(1): 1-8.
doi: 10.1177/004051757304300101
[12] 张艳, 熊正权, 李晓楠, 等. 水相自组装生物基核壳膨胀型阻燃剂对聚乳酸的阻燃改性[J]. 高分子材料科学与工程, 2020, 36(11): 49-55.
ZHANG Yan, XIONG Zhengquan, LI Xiaonan, et al. Flame retardant modification of polylactic acid by bio-based core-shell intumescent flame retardant self-assembled in aqueous phase[J]. Polymeric Materials Science and Engineering, 2020, 36(11): 49-55.
[13] CHENG T H, LIU Z J, YANG J Y, et al. Extraction of functional dyes from tea stem waste in alkaline medium and their application for simultaneous coloration and flame retardant and bioactive functionalization of silk[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18405-18413.
[1] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[2] 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10.
[3] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[4] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[5] 曲连艺, 刘江龙, 徐英俊, 王玉忠. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 176-183.
[6] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[7] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[8] 李宝洁, 朱元昭, 钟毅, 徐红, 毛志平. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112.
[9] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[10] 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125.
[11] 陈珺娴, 李伟萍, 付琪轩, 冯新星, 张华. 芳纶/阻燃粘胶/阻燃锦纶混纺织物制备及其性能[J]. 纺织学报, 2022, 43(09): 107-114.
[12] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[13] 熊永辉, 王冬, 杜长森, 付少海. 二硫代焦磷酸酯水性分散体系的制备及其在阻燃粘胶纤维中的应用[J]. 纺织学报, 2022, 43(07): 22-28.
[14] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[15] 李娜, 王晓, 李振宝, 李佥, 杜冰. 基于腺嘌呤核苷酸单体的光接枝生态阻燃棉织物制备及其性能[J]. 纺织学报, 2022, 43(07): 97-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[4] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[5] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[6] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .
[7] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .
[8] 王新锋;罗欣;汪晓东;吴慧莉. 改性聚氨酯热粘性能及力学性能[J]. 纺织学报, 2006, 27(2): 58 -60 .
[9] 储咏梅;王琪;王国和. 竹浆纤维纯纺及混纺纱线弹性测试与分析[J]. 纺织学报, 2006, 27(2): 68 -70 .
[10] 牛增元;房丽萍.;杨桂朋;薛秋红;王境堂;孙忠松. 纺织品中邻苯二甲酸酯类环境激素在人工汗液中的迁移[J]. 纺织学报, 2006, 27(2): 74 -77 .