纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 19-26.doi: 10.13475/j.fzxb.20220811008

• 纤维材料 • 上一篇    下一篇

聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能

杨潇东1,2, 于斌1,2(), 孙辉1,2, 朱斐超1,2, 刘鹏1,2   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
  • 收稿日期:2022-08-24 修回日期:2022-11-21 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 于斌(1976—),男,教授,博士。主要研究方向为产业用纺织品材料。E-mail:yubin7712@163.com。
  • 作者简介:杨潇东(1994—),男,博士生。主要研究方向为空气过滤用熔喷非织造材料。
  • 基金资助:
    浙江省自然科学基金项目(LTGS23E030005)

Preparation and filtration properties of polyethylene trifluoroethylene melt-blown nonwovens

YANG Xiaodong1,2, YU Bin1,2(), SUN Hui1,2, ZHU Feichao1,2, LIU Peng1,2   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Zhejiang Provincial Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
  • Received:2022-08-24 Revised:2022-11-21 Published:2023-02-15 Online:2023-03-07

摘要:

为制备耐高温熔喷过滤材料以应对高温工业粉尘的污染问题,研究了聚乙烯三氟氯乙烯(ECTFE)的热性能、动态热机械性能、流变性能以及形貌,并选取合适的工艺参数成功制备得到ECTFE熔喷非织造材料,对ECTFE熔喷非织造材料的结构与高温处理下的过滤性能进行表征,结果表明:ECTFE熔喷非织造材料纤维网中的纤维呈现随机交错、缠绕排列,其纤维直径分布在4~12 μm, 平均直径约为7.12 μm,其孔径主要分布在45~55 μm;当将ECTFE熔喷非织造材料从150 ℃预加热到210 ℃并用于过滤后,其对PM10的过滤效率均保持在99.96%,而对PM2.5和PM5的过滤效率随着ECTFE熔喷非织造材料预加热温度的升高逐渐降低,但仍能够保持在55.16%以上。

关键词: 聚乙烯三氟氯乙烯, 熔喷非织造材料, 耐高温, 过滤性能, 工业过滤材料, 流变性能

Abstract:

Objective In order to prepare high temperature resistant melt-blown filter materials to deal with the pollution of high temperature industrial dust, the thermal properties, dynamic thermomechanical properties, rheological properties and morphology of polyethylene trifluoroethylene (ECTFE) masterbatch were studied at first, and then the ECTFE melt-blown nonwovens were to be prepared by selecting appropriate process parameters. So far, there are few studies on ECTFE melt-blown nonwovens for air filtration.
Method The properties and structures of ECTFE masterbatch were determined by differential scanning calorimeter, dynamic thermo mechanical analyzer, thermogravimetric analyzer and melt flow meter. The ECTFE melt-blown nonwovens were then successfully prepared according to these studies on ECTFE masterbatch. The surface morphologies and pore size distribution of ECTFE melt-blown nonwovens were scrutinized by scanning electron microscope and pore size meter. The ECTFE melt-blown nonwovens was preheated at different tempera-tures (150, 170, 190, 210 and 220 ℃) using a muffle furnace. After that, the filtration efficiency and tensile properties of ECTFE melt-blown nonwovens was calculated by the dust particle detector and universal tensile tester.
Results The results show that with the increase of heating rate, the melting peak(Tp) of ECTFE masterbatch shifted to the right, and Tp was enhanced from 235.02 to 239.21 ℃, and the width of half peak increased(Fig. 3). The glass transition temperature of ECTFE masterbatch was found to be about 86.2 ℃(Fig. 4). The decomposition temperatures at initial and 5% weight lost were 300 and 372 ℃, respectively. It is obvious that for ECTFE masterbatch the temperature of the thermogravimetric zone was obviously higher than that of the melting process, which ensures the smooth process of ECTFE melt-blown nonwovens. When the test temperature increased from 250 to 290 ℃, the melt flow index elevated from 180 g/(10 min) to 376 g/(10 min), indicating that the melt fluidity of ECTFE masterbatch became better with the increasing of the temperature(Fig. 6(a)). The diameter of the fibers in ECTFE melt-blown nonwovens ranged from 4 to 12 μm, and its average diameter was about 7.12 μm. Additionally, the pore size of ECTFE melt-blown nonwovens was mainly in the range from 45 to 55 μm(as shown in Fig. 7). The filtration efficiency of ECTFE melt-blown nonwovens for PM10 was maintained at 99.96% after it was preheated at temperatures of 150~210 ℃. Although the filtration efficiency of ECTFE melt-blown nonwovens for PM2.5 and PM5 decreased slightly with the increasing of preheated temperatures, it still exceeded 55.16% and 72.93%, respectively(Fig. 8).
Conclusion The glass transition temperature and melting peak of ECTFE masterbatch were about 86.20 and 235.02 ℃, respectively. Its complex viscosity decreased when increasing the shear rate and the ECTFE was categorized as a "pseudoplastic fluid". Besides, ECTFE masterbatch has excellent thermal stability at constant temperatures of 260, 270 and 280 ℃. ECTFE melt-blown nonwovens can be successfully fabricated under the conditions of heating temperature 260 ℃, hot air temperature 260 ℃, airway pressure 0.2 MPa, melt-blown pressure 0.5 MPa, acceptance distance 13 cm and translation speed 0.1 mm/s. The fibers in the ECTFE melt-blown nonwovens web were randomly interleaved and wound, and ensures that the ECTFE melt-blown nonwovens with high filtration efficiency. Therefore, it is believed that ECTFE melt-blown nonwoven should be an ideal filter material for high temperature resistant air filtration.

Key words: polyethylene trifluoroethylene, melt-blown nonwoven, high temperature resistance, filtration property, industrial filtration material, rheological property

中图分类号: 

  • TS176

表1

ECTFE熔喷非织造材料制备工艺参数"

物料温
度/℃
热风温
度/℃
气道压
力/MPa
熔喷压
力/MPa
接收距
离/cm
平台速度/
(mm·s-1)
260~270 260 0.2 0.5 13 0.1

图1

ECTFE熔喷非织造材料制备过程"

图2

过滤效率测量原理示意图"

图3

ECTFE的第2次DSC升温曲线"

表2

ECTFE的第2次DSC升温曲线参数"

升温速率/(℃·min-1) Tp/℃ ΔHc/(J·g-1) Xc/%
10 235.02 21.46 53.65
20 237.02 26.17 65.42
30 238.23 25.30 63.25
40 239.21 25.78 64.45

图4

ECTFE的DMA曲线"

图5

ECTFE的TG曲线和加热到不同温度的TG曲线"

表3

不同温度下质量损失5%所需时间"

温度/℃ 260 270 280 290
时间/min 34.92 32.36 28.64 12.87

图6

ECTFE的熔体流动指数和复合黏度"

图7

ECTFE熔喷非织造材料的SEM照片和纤维直径及孔径分布图"

图8

ECTFE熔喷非织造材料在不同温度预处理下对PM2.5、PM5和PM10的过滤效率"

图9

ECTFE熔喷非织造材料的应力-应变曲线"

[1] HOU P, WU S. Long-term changes in extreme air pollution meteorology and the implications for air qua-lity[J]. Scientific Reports, 2016, 6: 23792-23800.
doi: 10.1038/srep23792
[2] EASTERLING D R, MEEHL G A, PARMESAN C, et al. Climate extremes: observations, modeling, and impacts[J]. Science, 2000, 289(5487): 2068-2074.
doi: 10.1126/science.289.5487.2068 pmid: 11000103
[3] STOWELL J D, KIM Y M, GAO Y, et al. The impact of climate change and emissions control on future ozone levels: implications for human health[J]. Environment International, 2017(108): 41-50.
[4] 刘朝军, 刘俊杰, 丁伊可, 等. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019, 40(6): 134-142.
LIU Zhaojun, LIU Junjie, DING Yike, et al. Research progress on the preparation of high efficiency air filtration materials by electrostatic spinning method[J]. Journal of Textile Research, 2019, 40(6): 134-142.
[5] XIE F, WANG Y, ZHUO L, et al. Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture[J]. ACS Appl Mater Interfaces, 2020, 12(50):56499-56508.
doi: 10.1021/acsami.0c18143
[6] 孙斌, 陈科, 张万里, 等. 三氟氯乙烯共聚物及其应用进展[J]. 化工新型材料, 2019, 47(10): 27-32.
SUN Bin, CHEN Ke, ZHANG Wanli, et al. Progress of trifluorochloroethylene copolymer and its applica-tion[J]. New Chemical Materials, 2019, 47(10): 27-32.
[7] LI N, XIA T, NEL A E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nano-particles[J]. Free Radical Biology & Medicine, 2008, 44(9): 1689-1699.
doi: 10.1016/j.freeradbiomed.2008.01.028
[8] LIBERT J P, CANDAS V, AMOROS C, et al. Temperature regulation during intermittent exercise with progressive dehydration[J]. The Japanese Journal of Physiology, 1986, 36(2): 253-266.
doi: 10.2170/jjphysiol.36.253
[9] ZHANG K, HUO Q, ZHOU Y Y, et al. Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17368-17374.
[10] 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6): 174-182.
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress of electrostatic spinning multi-stage structure air filtration materials[J]. Journal of Textile Research, 2020, 41(6): 174-182.
doi: 10.1177/004051757104100215
[11] ANTONICELLI L, BILÒ M B, PUCCI S, et al. Efficacy of an air-cleaning device equipped with a high efficiency particulate air filter in house dust mite respiratory allergy[J]. Allergy, 1991, 46(8): 594-600.
doi: 10.1111/j.1398-9995.1991.tb00629.x pmid: 1789401
[12] TAN D H, ZHOU C, ELLISON C J, et al. Meltblown fibers: influence of viscosity and elasticity on diameter distribution[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(15/16): 892-900.
doi: 10.1016/j.jnnfm.2010.04.012
[13] NAYAK R, PADHYE R, KYRATZIS I L, et al. Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene[J]. Textile Research Journal, 2012, 83(6): 606-617.
doi: 10.1177/0040517512458347
[14] ZHU F, SU J, ZHAO Y, et al. Influence of halloysite nanotubes on poly (lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly(lactic acid)[J]. Textile Research Journal, 2019, 89(19/20): 4173-4185.
doi: 10.1177/0040517519826926
[15] SHI J, ZOU Y, WANG J X, et al. Investigation on designing meltblown fibers for the filtering layer of a mask by cross-scale simulations[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1962-1971.
doi: 10.1021/acs.iecr.0c06232
[16] TIAN X, OU Q, PEI C, et al. Effect of main-stage filter media selection on the loading performance of a two-stage filtration system[J]. Building and Environment, 2021. DOI: 10.1016/j.buildenv.2021.107745.
doi: 10.1016/j.buildenv.2021.107745
[17] ZHU B, XIE S, HAN W, et al. Swirling diffused air flow and its effect on helical fiber motion in swirl-die melt blowing[J]. Fibers and Polymers, 2021, 22(6): 1594-1600.
doi: 10.1007/s12221-021-0809-0
[18] YU B, CAO Y, SUN H, et al. The structure and properties of biodegradable PLLA/PDLA for melt-blown nonwovens[J]. Journal of Polymers and the Environment, 2017, 25(2): 510-517.
doi: 10.1007/s10924-016-0827-y
[19] 杜琳, 张有忱, 杨卫民, 等. 熔体微分静电纺聚丙烯空气驻极体滤膜的制备及其性能[J]. 纺织学报, 2018, 39(10): 12-17.
DU Lin, ZHANG Youchen, YANG Weimin, et al. Preparation and properties of polypropylene air filter membrane by melt differential electrospinning[J]. Journal of Textile Research, 2018, 39(10): 12-17.
[20] NABGAN W, NABGAN B, ABDULLAH T A T, et al. Exploration of reaction mechanisms on the plastic waste polyethylene terephthalate (PET) dissolved in phenol steam reforming reaction to produce hydrogen and valuable liquid fuels[J]. Journal of Analytical and Applied Pyrolysis, 2020. DOI:10.1016/j.jaap.2020.104860.
doi: 10.1016/j.jaap.2020.104860
[21] JAFARI M, SHIM E, JOIJODE A. Fabrication of poly(lactic acid) filter media via the meltblowing process and their filtration performances: a comparative study with polypropylene meltblown[J]. Separation and Purification Technology, 2021.DOI:10.1016/j.seppur.118185.
doi: 10.1016/j.seppur.118185
[22] LI T T, CEN X, REN H T, et al. Zeolitic imidazolate framework-8/polypropylene-polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2.5capture[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8730-8739.
[23] LIM J C, PARK Y W, KIM H C. Study on manufacturing PCT/PPS flame retardant fiber by sheath/core conjugate spinning[J]. Fibers and Polymers, 2020, 21(3): 498-504.
doi: 10.1007/s12221-020-9082-x
[24] GUPTA P, KANDASUBRAMANIAN B. Directional fluid gating by janus membranes with heterogeneous wetting properties for selective oil-water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 19102-19113.
[25] 黄政, 曾鸣, 李芳颖, 等. 聚酰亚胺驻极体空气过滤材料的研究与制备[J]. 产业用纺织品, 2019, 37(4): 19-24.
HUANG Zheng, ZENG Ming, LI Fangying, et al. Research and preparation of polyimide electret air filtration materials[J]. Technical Textiles, 2019, 37(4): 19-24.
[26] ALOTHMAN O Y, SHAIKH H M, ALSHAMMARI B A, et al. Structural, morphological and thermal properties of nano filler produced from date palm-based micro fibers (phoenix dactylifera L)[J]. Journal of Polymers and the Environment, 2022, 30(2): 622-630.
doi: 10.1007/s10924-021-02224-0
[27] 杨振生, 潘浩男, 李春利, 等. 高性能聚苯硫醚过滤材料研究进展[J]. 化工新型材料, 2019, 47(10): 216-218,223.
YANG Zhensheng, PAN Haonan, LI Chunli, et al. Progress of PPS filtration material with high perfor-mance[J]. New Chemical Materials, 2019, 47(10): 216-218,223.
[28] TOSHIFUMI S, KEITH G. Nanoscale boehmite filler for corrosion and wear-resistant polyphenylenesulfide coatings[J]. Polymers and Polymer Composites, 2004, 12(3): 153-167.
doi: 10.1177/096739110401200301
[29] LU D, HOU K, WANG B. Surface treatment on the oxidation resistance property of NdFeB powder[J]. China Plastics Industry, 2009, 37(6): 60-61.
[30] LNOVIKOV D V, KRASOVSKII A N. Percolation effects on the surface of a polyimide film modified with aqueous solutions of an alkali and acid[J]. Colloid Journal, 2003, 65(1): 54-59.
doi: 10.1023/A:1022319024877
[31] 邓洪. 静电纺聚酰亚胺纳米纤维及其应用研究现状[J]. 纺织科技进展, 2020(9): 4-7.
DENG Hong. Status of research on electrostatically spun polyimide nanofibers and their applications[J]. Progress in Textile Science & Technology, 2020(9): 4-7.
[32] WANG J N, ZHANG Y M, LI X Y. Effect of the draw ratio in dry jet-wet spinning on aromatic copolysulfonamide fibers[J]. Nuclear Science and Techniques, 2020, 31(7): 1-11.
[33] 付维贵, 翟高伟, 刘建超, 等. 紫外接枝和界面聚合法修饰的PVDF/PSA耐酸复合纳滤膜的制备及其性能[J]. 天津工业大学学报, 2021, 40(5): 1-10.
FU Weigui, ZHAI Gaowei, LIU Jianchao, et al. Preparation and properties of PVDF/PSA acid-resistant composite nanofiltration membrane modified by UV grafting and interfacial polymerization[J]. Journal of Tiangong University, 2021, 40(5): 1-10.
[34] XU K, CAI Y, HASSANKIADEH N T, et al. ECTFE membrane fabrication via TIPS method using ATBC diluent for vacuum membrane distillation[J]. Desalination, 2019, 456: 13-22.
doi: 10.1016/j.desal.2019.01.004
[35] YAO N, KHUSID B, SIRKAR K K, et al. Nanoparticle filtration through microporous ECTFE membrane in an alcoholic solution[J]. Separation and Purification Technology, 2019, 210: 754-763.
doi: 10.1016/j.seppur.2018.08.022
[36] 高鹏飞, 刘勇营, 郑刚, 等. 乙烯-三氟氯乙烯共聚物的制备及应用[J]. 浙江化工, 2019, 50(4): 5-9.
GAO Pengfei, LIU Yongying, ZHENG Gang, et al. Preparation and application of ethylene-trifluorochloroethylene copolymer[J]. Zhejiang Chemical Industry, 2019, 50(4): 5-9.
[37] LIU G, PAN J, XU X, et al. Preparation of ECTFE porous membrane with a green diluent TOTM and performance in VMD process[J]. Journal of Membrane Science, 2020.DOI: 10.1016/j.memsci.2020.118375.
doi: 10.1016/j.memsci.2020.118375
[38] PAN Jian, XIAO Changfa, ZHAO Jian, et al. Crystalline structures and properties of uniaxial oriented poly(ethylene chlorotrifluoroethylene) fiber[J]. Journal of Materials Engineering, 2016, 44(7): 73-77.
[39] GHOBASHY M M, ELHADY M A. Radiation crosslinked magnetized wax (PE/Fe3O4) nano composite forselective oil adsorption[J]. Composites Communications, 2017, 3:18-22.
doi: 10.1016/j.coco.2016.12.001
[40] TASTUNO H, AIMI K, ANDO S. Solid-state 19F MAS NMR study on the conformation and molecular mobility of poly(chlorotrifluoroethylene)[J]. Magnetic Resonance in Chemistry, 2007, 45: 401-409.
pmid: 17372960
[41] ZHU F, SU J, ZHAO Y, et al. Influence of halloysite nanotubes on poly(lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly(lactic acid)[J]. Textile Research Journal, 2019, 89(19/20): 1-13.
[42] 赵家明, 孙辉, 于斌, 等. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(2): 89-97.
ZHAO Jiaming, SUN Hui, YU Bin, et al. Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties[J]. Journal of Textile Research, 2022, 43(2): 89-97.
[1] 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62.
[2] 谭林立, 秦柳, 李英儒, 邓伶俐, 谢知音, 李时东. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能[J]. 纺织学报, 2023, 44(01): 87-92.
[3] 吴燕金, 王江, 王洪. 水驻极聚丙烯熔喷非织造材料的制备及其带电特性分析[J]. 纺织学报, 2022, 43(12): 29-34.
[4] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[5] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[6] 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97.
[7] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[8] 张倩玉, 秦志刚, 阎若思, 贾立霞. 剪切增稠液/纤维复合材料防弹性能的研究进展[J]. 纺织学报, 2021, 42(06): 180-188.
[9] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[10] 董大林, 宾月珍, 蹇锡高. 基于干法纺丝的含二氮杂萘酮结构聚芳醚酮纤维制备及其性能[J]. 纺织学报, 2020, 41(12): 1-6.
[11] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28.
[12] 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8.
[13] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32.
[14] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
[15] 缪特, 张如全, 冯阳. 纳米发泡整理对芳纶过滤材料性能的影响[J]. 纺织学报, 2019, 40(09): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[3] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[6] 刘从九. 我国纺织品绿色国际竞争力[J]. 纺织学报, 2004, 25(02): 116 -118 .
[7] 林红;陈宇岳;任煜;仲志锋;王红卫. 经等离子体处理的蚕丝纤维结构与性能[J]. 纺织学报, 2004, 25(03): 9 -10 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[10] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .