纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 19-26.doi: 10.13475/j.fzxb.20220811008
杨潇东1,2, 于斌1,2(), 孙辉1,2, 朱斐超1,2, 刘鹏1,2
YANG Xiaodong1,2, YU Bin1,2(), SUN Hui1,2, ZHU Feichao1,2, LIU Peng1,2
摘要:
为制备耐高温熔喷过滤材料以应对高温工业粉尘的污染问题,研究了聚乙烯三氟氯乙烯(ECTFE)的热性能、动态热机械性能、流变性能以及形貌,并选取合适的工艺参数成功制备得到ECTFE熔喷非织造材料,对ECTFE熔喷非织造材料的结构与高温处理下的过滤性能进行表征,结果表明:ECTFE熔喷非织造材料纤维网中的纤维呈现随机交错、缠绕排列,其纤维直径分布在4~12 μm, 平均直径约为7.12 μm,其孔径主要分布在45~55 μm;当将ECTFE熔喷非织造材料从150 ℃预加热到210 ℃并用于过滤后,其对PM10的过滤效率均保持在99.96%,而对PM2.5和PM5的过滤效率随着ECTFE熔喷非织造材料预加热温度的升高逐渐降低,但仍能够保持在55.16%以上。
中图分类号:
[1] |
HOU P, WU S. Long-term changes in extreme air pollution meteorology and the implications for air qua-lity[J]. Scientific Reports, 2016, 6: 23792-23800.
doi: 10.1038/srep23792 |
[2] |
EASTERLING D R, MEEHL G A, PARMESAN C, et al. Climate extremes: observations, modeling, and impacts[J]. Science, 2000, 289(5487): 2068-2074.
doi: 10.1126/science.289.5487.2068 pmid: 11000103 |
[3] | STOWELL J D, KIM Y M, GAO Y, et al. The impact of climate change and emissions control on future ozone levels: implications for human health[J]. Environment International, 2017(108): 41-50. |
[4] | 刘朝军, 刘俊杰, 丁伊可, 等. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019, 40(6): 134-142. |
LIU Zhaojun, LIU Junjie, DING Yike, et al. Research progress on the preparation of high efficiency air filtration materials by electrostatic spinning method[J]. Journal of Textile Research, 2019, 40(6): 134-142. | |
[5] |
XIE F, WANG Y, ZHUO L, et al. Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture[J]. ACS Appl Mater Interfaces, 2020, 12(50):56499-56508.
doi: 10.1021/acsami.0c18143 |
[6] | 孙斌, 陈科, 张万里, 等. 三氟氯乙烯共聚物及其应用进展[J]. 化工新型材料, 2019, 47(10): 27-32. |
SUN Bin, CHEN Ke, ZHANG Wanli, et al. Progress of trifluorochloroethylene copolymer and its applica-tion[J]. New Chemical Materials, 2019, 47(10): 27-32. | |
[7] |
LI N, XIA T, NEL A E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nano-particles[J]. Free Radical Biology & Medicine, 2008, 44(9): 1689-1699.
doi: 10.1016/j.freeradbiomed.2008.01.028 |
[8] |
LIBERT J P, CANDAS V, AMOROS C, et al. Temperature regulation during intermittent exercise with progressive dehydration[J]. The Japanese Journal of Physiology, 1986, 36(2): 253-266.
doi: 10.2170/jjphysiol.36.253 |
[9] | ZHANG K, HUO Q, ZHOU Y Y, et al. Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17368-17374. |
[10] | 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6): 174-182. |
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress of electrostatic spinning multi-stage structure air filtration materials[J]. Journal of Textile Research, 2020, 41(6): 174-182.
doi: 10.1177/004051757104100215 |
|
[11] |
ANTONICELLI L, BILÒ M B, PUCCI S, et al. Efficacy of an air-cleaning device equipped with a high efficiency particulate air filter in house dust mite respiratory allergy[J]. Allergy, 1991, 46(8): 594-600.
doi: 10.1111/j.1398-9995.1991.tb00629.x pmid: 1789401 |
[12] |
TAN D H, ZHOU C, ELLISON C J, et al. Meltblown fibers: influence of viscosity and elasticity on diameter distribution[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(15/16): 892-900.
doi: 10.1016/j.jnnfm.2010.04.012 |
[13] |
NAYAK R, PADHYE R, KYRATZIS I L, et al. Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene[J]. Textile Research Journal, 2012, 83(6): 606-617.
doi: 10.1177/0040517512458347 |
[14] |
ZHU F, SU J, ZHAO Y, et al. Influence of halloysite nanotubes on poly (lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly(lactic acid)[J]. Textile Research Journal, 2019, 89(19/20): 4173-4185.
doi: 10.1177/0040517519826926 |
[15] |
SHI J, ZOU Y, WANG J X, et al. Investigation on designing meltblown fibers for the filtering layer of a mask by cross-scale simulations[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1962-1971.
doi: 10.1021/acs.iecr.0c06232 |
[16] |
TIAN X, OU Q, PEI C, et al. Effect of main-stage filter media selection on the loading performance of a two-stage filtration system[J]. Building and Environment, 2021. DOI: 10.1016/j.buildenv.2021.107745.
doi: 10.1016/j.buildenv.2021.107745 |
[17] |
ZHU B, XIE S, HAN W, et al. Swirling diffused air flow and its effect on helical fiber motion in swirl-die melt blowing[J]. Fibers and Polymers, 2021, 22(6): 1594-1600.
doi: 10.1007/s12221-021-0809-0 |
[18] |
YU B, CAO Y, SUN H, et al. The structure and properties of biodegradable PLLA/PDLA for melt-blown nonwovens[J]. Journal of Polymers and the Environment, 2017, 25(2): 510-517.
doi: 10.1007/s10924-016-0827-y |
[19] | 杜琳, 张有忱, 杨卫民, 等. 熔体微分静电纺聚丙烯空气驻极体滤膜的制备及其性能[J]. 纺织学报, 2018, 39(10): 12-17. |
DU Lin, ZHANG Youchen, YANG Weimin, et al. Preparation and properties of polypropylene air filter membrane by melt differential electrospinning[J]. Journal of Textile Research, 2018, 39(10): 12-17. | |
[20] |
NABGAN W, NABGAN B, ABDULLAH T A T, et al. Exploration of reaction mechanisms on the plastic waste polyethylene terephthalate (PET) dissolved in phenol steam reforming reaction to produce hydrogen and valuable liquid fuels[J]. Journal of Analytical and Applied Pyrolysis, 2020. DOI:10.1016/j.jaap.2020.104860.
doi: 10.1016/j.jaap.2020.104860 |
[21] |
JAFARI M, SHIM E, JOIJODE A. Fabrication of poly(lactic acid) filter media via the meltblowing process and their filtration performances: a comparative study with polypropylene meltblown[J]. Separation and Purification Technology, 2021.DOI:10.1016/j.seppur.118185.
doi: 10.1016/j.seppur.118185 |
[22] | LI T T, CEN X, REN H T, et al. Zeolitic imidazolate framework-8/polypropylene-polycarbonate barklike meltblown fibrous membranes by a facile in situ growth method for efficient PM2.5capture[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8730-8739. |
[23] |
LIM J C, PARK Y W, KIM H C. Study on manufacturing PCT/PPS flame retardant fiber by sheath/core conjugate spinning[J]. Fibers and Polymers, 2020, 21(3): 498-504.
doi: 10.1007/s12221-020-9082-x |
[24] | GUPTA P, KANDASUBRAMANIAN B. Directional fluid gating by janus membranes with heterogeneous wetting properties for selective oil-water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 19102-19113. |
[25] | 黄政, 曾鸣, 李芳颖, 等. 聚酰亚胺驻极体空气过滤材料的研究与制备[J]. 产业用纺织品, 2019, 37(4): 19-24. |
HUANG Zheng, ZENG Ming, LI Fangying, et al. Research and preparation of polyimide electret air filtration materials[J]. Technical Textiles, 2019, 37(4): 19-24. | |
[26] |
ALOTHMAN O Y, SHAIKH H M, ALSHAMMARI B A, et al. Structural, morphological and thermal properties of nano filler produced from date palm-based micro fibers (phoenix dactylifera L)[J]. Journal of Polymers and the Environment, 2022, 30(2): 622-630.
doi: 10.1007/s10924-021-02224-0 |
[27] | 杨振生, 潘浩男, 李春利, 等. 高性能聚苯硫醚过滤材料研究进展[J]. 化工新型材料, 2019, 47(10): 216-218,223. |
YANG Zhensheng, PAN Haonan, LI Chunli, et al. Progress of PPS filtration material with high perfor-mance[J]. New Chemical Materials, 2019, 47(10): 216-218,223. | |
[28] |
TOSHIFUMI S, KEITH G. Nanoscale boehmite filler for corrosion and wear-resistant polyphenylenesulfide coatings[J]. Polymers and Polymer Composites, 2004, 12(3): 153-167.
doi: 10.1177/096739110401200301 |
[29] | LU D, HOU K, WANG B. Surface treatment on the oxidation resistance property of NdFeB powder[J]. China Plastics Industry, 2009, 37(6): 60-61. |
[30] |
LNOVIKOV D V, KRASOVSKII A N. Percolation effects on the surface of a polyimide film modified with aqueous solutions of an alkali and acid[J]. Colloid Journal, 2003, 65(1): 54-59.
doi: 10.1023/A:1022319024877 |
[31] | 邓洪. 静电纺聚酰亚胺纳米纤维及其应用研究现状[J]. 纺织科技进展, 2020(9): 4-7. |
DENG Hong. Status of research on electrostatically spun polyimide nanofibers and their applications[J]. Progress in Textile Science & Technology, 2020(9): 4-7. | |
[32] | WANG J N, ZHANG Y M, LI X Y. Effect of the draw ratio in dry jet-wet spinning on aromatic copolysulfonamide fibers[J]. Nuclear Science and Techniques, 2020, 31(7): 1-11. |
[33] | 付维贵, 翟高伟, 刘建超, 等. 紫外接枝和界面聚合法修饰的PVDF/PSA耐酸复合纳滤膜的制备及其性能[J]. 天津工业大学学报, 2021, 40(5): 1-10. |
FU Weigui, ZHAI Gaowei, LIU Jianchao, et al. Preparation and properties of PVDF/PSA acid-resistant composite nanofiltration membrane modified by UV grafting and interfacial polymerization[J]. Journal of Tiangong University, 2021, 40(5): 1-10. | |
[34] |
XU K, CAI Y, HASSANKIADEH N T, et al. ECTFE membrane fabrication via TIPS method using ATBC diluent for vacuum membrane distillation[J]. Desalination, 2019, 456: 13-22.
doi: 10.1016/j.desal.2019.01.004 |
[35] |
YAO N, KHUSID B, SIRKAR K K, et al. Nanoparticle filtration through microporous ECTFE membrane in an alcoholic solution[J]. Separation and Purification Technology, 2019, 210: 754-763.
doi: 10.1016/j.seppur.2018.08.022 |
[36] | 高鹏飞, 刘勇营, 郑刚, 等. 乙烯-三氟氯乙烯共聚物的制备及应用[J]. 浙江化工, 2019, 50(4): 5-9. |
GAO Pengfei, LIU Yongying, ZHENG Gang, et al. Preparation and application of ethylene-trifluorochloroethylene copolymer[J]. Zhejiang Chemical Industry, 2019, 50(4): 5-9. | |
[37] |
LIU G, PAN J, XU X, et al. Preparation of ECTFE porous membrane with a green diluent TOTM and performance in VMD process[J]. Journal of Membrane Science, 2020.DOI: 10.1016/j.memsci.2020.118375.
doi: 10.1016/j.memsci.2020.118375 |
[38] | PAN Jian, XIAO Changfa, ZHAO Jian, et al. Crystalline structures and properties of uniaxial oriented poly(ethylene chlorotrifluoroethylene) fiber[J]. Journal of Materials Engineering, 2016, 44(7): 73-77. |
[39] |
GHOBASHY M M, ELHADY M A. Radiation crosslinked magnetized wax (PE/Fe3O4) nano composite forselective oil adsorption[J]. Composites Communications, 2017, 3:18-22.
doi: 10.1016/j.coco.2016.12.001 |
[40] |
TASTUNO H, AIMI K, ANDO S. Solid-state 19F MAS NMR study on the conformation and molecular mobility of poly(chlorotrifluoroethylene)[J]. Magnetic Resonance in Chemistry, 2007, 45: 401-409.
pmid: 17372960 |
[41] | ZHU F, SU J, ZHAO Y, et al. Influence of halloysite nanotubes on poly(lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly(lactic acid)[J]. Textile Research Journal, 2019, 89(19/20): 1-13. |
[42] | 赵家明, 孙辉, 于斌, 等. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(2): 89-97. |
ZHAO Jiaming, SUN Hui, YU Bin, et al. Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties[J]. Journal of Textile Research, 2022, 43(2): 89-97. |
[1] | 张宇静, 陈连节, 张思东, 张强, 黄瑞杰, 叶翔宇, 汪伦合, 宣晓雅, 于斌, 朱斐超. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性[J]. 纺织学报, 2023, 44(02): 55-62. |
[2] | 谭林立, 秦柳, 李英儒, 邓伶俐, 谢知音, 李时东. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能[J]. 纺织学报, 2023, 44(01): 87-92. |
[3] | 吴燕金, 王江, 王洪. 水驻极聚丙烯熔喷非织造材料的制备及其带电特性分析[J]. 纺织学报, 2022, 43(12): 29-34. |
[4] | 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9. |
[5] | 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69. |
[6] | 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97. |
[7] | 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41. |
[8] | 张倩玉, 秦志刚, 阎若思, 贾立霞. 剪切增稠液/纤维复合材料防弹性能的研究进展[J]. 纺织学报, 2021, 42(06): 180-188. |
[9] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[10] | 董大林, 宾月珍, 蹇锡高. 基于干法纺丝的含二氮杂萘酮结构聚芳醚酮纤维制备及其性能[J]. 纺织学报, 2020, 41(12): 1-6. |
[11] | 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28. |
[12] | 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8. |
[13] | 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32. |
[14] | 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102. |
[15] | 缪特, 张如全, 冯阳. 纳米发泡整理对芳纶过滤材料性能的影响[J]. 纺织学报, 2019, 40(09): 108-113. |
|