纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 10-16.doi: 10.13475/j.fzxb.20220901601

• 纤维材料 • 上一篇    下一篇

石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能

王鹏1, 申佳锟1, 陆银辉2, 盛红梅2, 王宗乾1(), 李长龙1   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.宣城凯欧纺织有限公司, 安徽 宣城 242000
  • 收稿日期:2022-12-07 修回日期:2023-06-07 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 王宗乾(1982—),男,教授,博士。主要研究方向为功能化纤维的结构调控与成形技术、先进印染加工技术与理论和生物源纤维清洁生产与多尺度利用。E-mail: wzqian@ahpu.edu.cn
  • 作者简介:王鹏(1990—),男,博士。主要研究方向为功能纺织品与环境净化纺织品构建。
  • 基金资助:
    安徽省重点研究与开发计划项目(2022a05020069);安徽省重点研究与开发计划项目(202104f06020003);安徽省高校自然科学研究重大项目(2022AH040137);安徽省高校中青年拔尖人才项目(gxbZD2020075);安徽省纺织工程技术研究中心、安徽省高等学校纺织面料重点实验室联合开放基金项目(2021AETKL09)

Preparation and photocatalytic properties of g-C3N4/MXene/Ag3PO4/polyacrylonitrile composite nanofiber membranes

WANG Peng1, SHEN Jiakun1, LU Yinhui2, SHENG Hongmei2, WANG Zongqian1(), LI Changlong1   

  1. 1. College of Textile and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Xuancheng K&O Textile Co., Ltd., Xuancheng, Anhui 242000, China
  • Received:2022-12-07 Revised:2023-06-07 Published:2023-12-15 Online:2024-01-22

摘要:

为解决单一催化剂传质效率低、光生载流子易复合、光吸收性能和反应活性位点有限、重复利用性能差等问题,首先构建了石墨相氮化碳/MXene/磷酸银(g-C3N4/MXene/Ag3PO4)粉状S型异质结催化剂,并采用静电纺丝技术制备了g-C3N4/MXene/Ag3PO4/聚丙烯腈复合纳米纤维膜;使用扫描电子显微镜、透射电子显微镜、红外光谱仪、X射线衍射仪对纳米纤维膜的形貌和性能进行表征,并考察了其对废水中有机染料的光催化降解性能。结果表明:通过静电纺丝技术能够将g-C3N4/MXene/Ag3PO4成功地负载在聚丙烯腈上,并均匀地分布在复合纳米纤维膜表面;纤维负载前后的直径均匀,尺寸为200~400 nm;g-C3N4/MXene/Ag3PO4/聚丙烯腈复合纳米纤维膜的催化氧化性能与粉状催化剂相比有所降低,但其在180 min时对染料的降解率并未显著降低(91.2%);重复使用5次后复合纳米纤维膜对活性红195依然具有较高的脱色率;自由基淬灭实验发现,超氧自由基·$\mathrm{O}_{2}^{-}$和空穴h+是染料发生氧化降解反应的主要活性物种,并依此提出光催化氧化降解染料的机制。

关键词: 光催化降解, 石墨相氮化碳, 静电纺丝, 重复使用性能, 纳米纤维膜, 聚丙烯腈

Abstract:

Objective Aiming at problems in the field of photodegradation, such as low mass transfer efficiency of a single catalyst, easy recombination of photogenerated carriers, limited light absorption performance and reaction active site, and poor reusability, a self-assembly method was used to construct a g-C3N4/MXene/Ag3PO4 S-type heterojunction catalyst structure, attempting to dope catalyst into polyacrylonitrile (PAN) spinning solution. The g-C3N4/MXene/Ag3PO4/PAN composite nanofiber membranes were successfully prepared using electrospinning technology.
Method In order to further characterize the morphology and structure of the composite nanofiber membrane, we used scanning electron microscopy, transmission electron microscope, infrared spectroscopy, and X-ray diffraction to characterize the size and morphology of the nanofiber membrane and its photocatalytic degradation performance for specific dyes. We also investigated its photocatalytic degradation performance for dye wastewater such as Reactive Red 195 in order to further explore its practical application potential. SEM and TEM characterization analysis showed that when photocatalysts were added, the nanofibers changed from a uniform long straight fibrous structure to a curved network structure.
Results The morphology of the nanofibers in the PAN composite nanofiber membrane was better, and g-C3N4/MXene/Ag3PO4 could be loaded onto the PAN through electrospinning technology. The g-C3N4/MXene/Ag3PO4 could be uniformly distributed on the surface of the composite nanofiber membrane. The diameter before and after loading g-C3N4/MXene/Ag3PO4 on the fibers showed a uniform state, with a size of approximately 200-400 nm. To investigate the specific impact effects, a composite nanofiber membrane was used for photocatalytic degradation of 50 mL of Reactive Red 195 (0.05 mmol/L) solution. The experimental results showed that the degradation rate of g-C3N4/MXene/Ag3PO4 gradually increased with time, and the dye was almost completely degraded after 60 min. This fully demonstrated the very important role of g-C3N4/MXene/Ag3PO4 in the degradation of Reactive Red 195 dye. In addition, although the degradation rate of dyes by g-C3N4/MXene/Ag3PO4/PAN was slow in the early stage of the reaction, the dyes were almost completely degraded at 180 min, indicating that the composite nanofiber membrane showed the same degradation effect as g-C3N4/MXene/Ag3PO4 and still had good photocatalytic degradation performance for dyes. After 180 min, the photocatalytic activity of g-C3N4/MXene/Ag3PO4/PAN composite nanofiber membrane was still high, with a degradation rate of 91.23%, exhibiting good recyclability. The g-C3N4/MXene/Ag3PO4/PAN still had a high decolorization rate for Reactive Red 195 after 5 cycles of used. The degradation rates of Reactive Red 195 were 91.23%, 82.54%, 81.40%, 79.30%, and 77.11% after 5 cycles of reaction for 180 min, respectively, indicating that g-C3N4/MXene/Ag3PO4/PAN had good reusability and stability. Exploring the photocatalytic mechanism of g-C3N4/MXene/Ag3PO4 catalyst, it was found through radical quenching experiments that superoxide radicals ·$\mathrm{O}_{2}^{-}$ and hole h+ were the main active species in the oxidative degradation reaction of dyes. After adding tert-butanol, disodium ethylenediaminetetraacetic acid, and p-benzoquinone to the reaction system, the degradation rates of Reactive Red 195 were 86.15%, 42.31%, and 10.82% at 180 min, respectively. This indicated that in the g-C3N4/MXene/Ag3PO4/PAN system, the contributions of ·OH, h+ and ·$\mathrm{O}_{2}^{-}$ to the decolorization and degradation reactions of dyes were 5.05%, 48.89%, and 80.38%, respectively. The ·$\mathrm{O}_{2}^{-}$ and h+ were the main active species in the oxidative degradation reactions of dyes.
Conclusion It was proposed that the mechanism of photocatalytic oxidation degradation of dyes may be the formation of a reasonable S-type heterojunction in g-C3N4/MXene/Ag3PO4. The introduction of MXene with high conductivity as a solid-state electron mediator leads to faster electron transfer from Ag3PO4 to the surface of g-C3N4, resulting in higher catalytic performance of the catalyst. This S-type heterostructure provides stronger reduction/oxidation ability to generate more active free radicals and higher catalytic activity to degrade pollutants, thereby decomposing Reactive Red 195 into small molecules under the synergistic effect of ·$\mathrm{O}_{2}^{-}$ and h+.

Key words: photocatalytic degradation, g-C3N4, electrostatic spinning, recycling performance, nanofiber membrane, polyacrylonitrile

中图分类号: 

  • O643.32

图1

PAN和g-C3N4/MXene/Ag3PO4/PAN的扫描电镜照片"

图2

PAN和g-C3N4/MXene/Ag3PO4/PAN的透射电镜照片"

图3

PAN、g-C3N4/MXene/Ag3PO4及g-C3N4/MXene/Ag3PO4/PAN的XRD谱图"

图4

PAN、g-C3N4/MXene/Ag3PO4及g-C3N4/MXene/Ag3PO4/PAN的FT-IR谱图"

图5

PAN、g-C3N4/MXene/Ag3PO4及g-C3N4/MXene/Ag3PO4/PAN对活性红195的降解率曲线"

图6

g-C3N4/MXene/Ag3PO4/PAN降解活性红195的紫外-可见光谱图"

图7

淬灭剂对活性红195氧化降解性能的影响"

[1] 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40 (10): 20-25.
XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofiber aerogels and its adsorption of methylene blue[J]. Journal of Textile Research, 2019, 40 (10): 20-25.
[2] 贾艳萍, 姜成, 郭泽辉, 等. 印染废水深度处理及回用研究进展[J]. 纺织学报, 2017, 38 (8): 172-180.
JIA Yanping, JIANG Cheng, GUO Zehui, et al. Research progress on deep treatment and recycling of dye wastewater[J]. Journal of Textile Research, 2017, 38 (8): 172-180.
[3] 吴瞳, 顾佳玉, 彭晨, 等. 石墨相氮化碳同质结光催化处理水中双酚A[J]. 中国环境科学, 2021, 41 (7): 3255-3265.
WU Tong, GU Jiayu, PENG Chen, et al. Study on photocatalytict degradation of bisphenol A in water by graphite phase carbon nitride homojunction[J]. China Environmental Science, 2021, 41 (7): 3255-3265.
[4] 邓细宇, 邝鑫雅, 字包叶, 等. 石墨相氮化碳(g-C3N4)用于光催化产氢的研究进展[J]. 功能材料与器件学报, 2020, 26 (1): 7-15.
DENG Xiyu, KUANG Xinya, ZI Baoye, et al. Research progress of graphite phase carbon nitride (g-C3N4) for photocatalytic hydrogen production[J]. Journal of Functional Materials and Devices, 2020, 26 (1): 7-15.
[5] HE F, WANG Z X, LI Y X, et al. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts[J]. Applied Catalysis B: Environmental, 2020, 269:1-21.
[6] 刘畅, 张志宾, 王有群, 等. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33 (S2): 104-112.
LIU Chang, ZHANG Zhibin, WANG Youqun, et al. Progress in photocatalytic degradation of pollutants based on g-C3N4 hetero junction composites[J]. Materials Reports, 2019, 33 (S2): 104-112.
[7] 张家晶, 郑永杰, 金春雪, 等. g-C3N4基光催化剂改性的研究进展[J]. 现代化工, 2021, 41 (3):42-47.
ZHANG Jiajing, ZHENG Yongjie, JIN Chunxue, et al. Research progress on modification of g-C3N4-based photocatalyst[J]. Modern Chemical Industry, 2021, 41 (3): 42-47.
[8] 郭梅, 任学昌, 王建钊, 等. TiO2/pg-C3N4复合催化剂的制备及光催化性能[J]. 中国环境科学, 2019, 39 (12): 5119-5125.
GUO Mei, REN Xuechang, WANG Jianzhao, et al. Preparation and photocatalytic performance of TiO2/pg-C3N4 composite phtocatalyst[J]. China Environmental Science, 2019, 39 (12): 5119-5125.
[9] 杨佳佳, 蒋克望, 林雪梅, 等. 静电纺丝制备g-C3N4/C纳米纤维及其可见光降解性能[J]. 无机化学学报, 2016, 32 (12): 2088-2094.
YANG Jiajia, JIANG Kewang, LIN Xuemei, et al. Synthesis of g-C3N4/C nanofibers by electrospinning and their photodegragradation performance under visible light[J]. Chinese Journal of Inorganic Chemistry, 2016, 32 (12): 2088-2094.
[10] SU Yuxian, WANG Bolun, LIU Li, et al. Electrospinning of a porous silica fiber-confined titanium dioxide catalyst for the degradation of methyl orange[J]. Journal of Nanoparticle Research, 2018, 20 (10): 632-637.
[11] QIN Y Y, LU J, MENG F Y, et al. Rationally constructing of a novel 2D/2D WO3/Pt/g-C3N4 Schottky-Ohmic junction towards efficient visible-light-driven photocatalytic hydrogen evolution and mechanism insight[J]. Journal of Colloid and Interface Science, 2021, 586: 576-587.
[12] ZHENG X H, WANG P, ZHANG X S, et al. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy[J]. Composites Part A: Applied Science and Manufacturing, 2022, 152: 1-9.
[13] 范海波, 任启芳, 余淼, 等. 磷酸银/类石墨氮化碳-硅藻土复合材料的制备及可见光催化性能[J]. 材料导报, 2019, 33 (20): 3383-3389.
FAN Haibo, REN Qifang, YU Miao, et al. Preparation and visible-light photocatalytic properties of silver orthophosphate/graphite carbon nitride-diatomite composites[J]. Materials Reports, 2019, 33 (20): 3383-3389.
[14] 李莉莉, 陈翠柏, 兰华春, 等. g-C3N4协同光催化还原Cr(Ⅵ)及氧化磺基水杨酸[J]. 环境科学, 2017, 38(4): 1483-1489.
LI Lili, CHEN Cuibai, LAN Huachun, et al. Simultaneous photocatalytic reduction of Cr(Ⅵ) and oxidation of SSA by carbon nitride[J]. Acta Scientiae Circumstantiae, 2017, 38 (4): 1483-1489.
[15] 郭茹月, 鲍艳. 二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进展[J]. 精细化工, 2021, 38 (4):649-661.
GUO Ruyue, BAO Yan. Research progress on wearable piezoresistive strain sensor based on two-dimensional conductive material/flexible polymer composites[J]. Fine Chemicals, 2021, 38 (4): 649-661.
[16] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S-scheme photocatalyst[J]. Advanced Materials, 2022, 34(11): 1-14.
[1] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[2] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[3] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[4] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[5] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[6] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
[7] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[8] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
[9] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[10] 刘星辰, 钱永芳, 吕丽华, 王迎. 胶原蛋白肽/聚乙二醇共混静电纺纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(08): 34-40.
[11] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[12] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[13] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[14] 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32.
[15] 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!