纺织学报 ›› 2023, Vol. 44 ›› Issue (03): 147-157.doi: 10.13475/j.fzxb.20220904111

• 染整与化学品 • 上一篇    下一篇

印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原

李方1, 潘航1, 章耀鹏1, 马慧婕2, 沈忱思1()   

  1. 1.东华大学 环境科学与工程学院, 上海 201620
    2.上海市政工程设计研究总院(集团)有限公司, 上海 200092
  • 收稿日期:2022-09-16 修回日期:2022-12-22 出版日期:2023-03-15 发布日期:2023-04-14
  • 通讯作者: 沈忱思(1985—),女,副教授,博士。主要研究方向为水污染控制化学。E-mail:shencs@dhu.edu.cn
  • 作者简介:李方(1979—),男,教授,博士。主要研究方向为水污染控制。
  • 基金资助:
    上海市自然科学基金项目(21ZR1401500);中央高校基本科研业务费专项资金资助项目(2232021G-11)

Efficient removal of polyvinyl alcohol and synergistic reduction of Cr(VI) from textile wastewater

LI Fang1, PAN Hang1, ZHANG Yaopeng1, MA Huijie2, SHEN Chensi1()   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
  • Received:2022-09-16 Revised:2022-12-22 Published:2023-03-15 Online:2023-04-14

摘要:

聚乙烯醇(PVA)是印染废水有机污染物的主要来源,同时含铬显影剂的使用导致部分印染废水含有六价铬(Cr(VI)),高浓度PVA及高毒性Cr(VI)的协同处理技术亟待突破。利用过硫酸盐热活化可引发聚合物发生自由基交联反应的特点,研究印染废水中PVA及Cr(VI)协同处理的方法。考察了过硫酸盐投加量、反应温度、初始pH值、Cr(VI)初始浓度等因素对二者去除效率的影响,借助X射线光电子能谱、凝胶渗透色谱等手段分析了反应沉淀物及剩余废水中残留物,探索了PVA及Cr(VI)的协同处理机制。结果表明:当过硫酸盐质量浓度为8.0 g/L、反应温度为70 ℃、废水pH值小于6时,模拟印染废水的化学需氧量去除率达91.9%,PVA去除率可达98.0%,Cr(VI)还原率为94.3%;过硫酸盐热活化引发PVA自由基交联及PVA的还原性是PVA高效沉淀及Cr(VI)有效还原的主要原因,此类浆料与重金属污染物的协同处理在印染废水方面具有一定的应用前景。

关键词: 聚乙烯醇, 六价铬, 过硫酸盐, 印染废水, 协同处理

Abstract:

Objective Polyvinyl alcohol (PVA), a major sizing agent used in textile weaving, is eluted in the pretreatment of textile wet processing and becomes the main source of organic pollutants in textile wastewater. Meanwhile, textile industries sometimes adopt chromium-containing developers for the printing screen, leading to Cr(VI) pollution in the textile wastewater. The simultaneous treatment technology of high concentration of PVA and highly toxic Cr(VI) in printing and dyeing wastewater is of great concern. Persulfates can initiate the free radical crosslinking of the polymeric chain, which is considered as one of the solutions for the crosslinking-induced precipitation of PVA. Additionally, under high temperature and acidic conditions, PVA can reduce Cr(VI) to Cr(III) which is less toxic. Thus, in the thermally activated persulfate system, with the rapid precipitation of high concentration of PVA, the effective reduction of Cr(VI) becomes possible.

Method To achieve the simultaneous removal of PVA and Cr(VI) from wastewater, persulfate (K2S2O8) was chosen as free radical crossling initiator. Simulative wastewater containing the high concentrations of PVA (10 g/L) and the coexisting Cr(VI) was the object of treatment. The thermal activation was used to activate K2S2O8 because desizing wastewater is often processed at high temperatures (70-80 °C) and Cr(VI) is more easily reduced under high temperature. The remoal performance of PVA and chemical oxygen demand(COD) and the reductive efficiency of Cr(VI) were studied, with specific attention paid to the performance of free radical-induced crosslinking of PVA and the production of free radicals and explored the critical factors controlling their efficacy by electron spin-resonance spectroscopy (ESR). In addition, the possible underlying mechanism was studied using X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC), and gas chromatography-mass spectrophotometry (GC-MS).

Results The K2S2O8 dosage, reaction temperature, and pH value of the solution were the key factors affecting the removal efficiency of PVA and Cr(VI). When the concentration of K2S2O8 was 8.0 g/L, the reaction temperature was 70 °C and the pH value of wastewater was less than 6, the COD value of simulated printing and dyeing wastewater were reduced from 18 000 to 1 458 mg/L with a removal rate of 91.9%, the removal rate of PVA could reach 98.0% and the reduction rate of Cr(VI) was 94.3%. As a crosslinking agent, K2S2O8 can induce the generation of PVA carbon radicals and promote the effective crosslinking. Meanwhile, the oxidation of —OH groups of the PVA polymer could enhance the production of $\mathrm{O}_{2}^{.-}$ radicals. This property which is analogous to catalyst could effectively promote the crosslinking of PVA. In addition to the reduction property of PVA itself, the reactive oxygen species(ROS) such as $\mathrm{O}_{2}^{.-}$ produced from the process of inducing radical cross-linking of PVA can also reduce Cr(VI) to Cr(III).

Conclusion Based on the free radical cross-linking technologies for polymers, a synergistic treatment technique for PVA and Cr(VI) pollutants removal using thermally activated persulfate system was proposed. The radical induced cross-linking and the reducibility of PVA under high temperature is found to be the main reason for efficient precipitation of PVA and synergistic reduction of Cr(VI), which has a certain application prospect in the treatment of textile wastewater. The advantages of this technology are as follows. 1) The thermally activated K2S2O8 can efficiently induce the radical based crosslinking of PVA and promoted the precipitation. 2) As a strong oxidant, K2S2O8 can oxidize the hydroxyl groups in PVA to promote the crosslinking efficiency. 3) The oxidation of —OH groups of the PVA polymer can enhance the production of ROS, which facilitates the simultaneous reduction of coexisting Cr(VI). Under optimal conditions, the maximum removal efficiencies of PVA and COD reached 98.0% and 91.9%, and the reduction rate of Cr(VI) was 94.3%. This process is technically highly efficient and cost effective, and provides new insights for the simultaneous treatment technology of high concentration of PVA and highly toxic Cr(VI) in printing and dyeing wastewater.

Key words: polyvinyl alcohol, Cr(VI), persulfate, dyeing and printing wastewater, synergistic removal

中图分类号: 

  • X703.1

图1

不同处理体系对PVA、Cr(VI)共存废水的处理效果"

图2

热活化PS体系协同处理PVA与Cr(VI)过程中的影响因素"

图3

PS热活化体系处理PVA的ESR谱"

图4

原PVA、PVA交联沉淀物、PVA和Cr(VI)协同处理沉淀产物的XPS C1s谱图"

图5

热活化PS体系单独处理PVA及PVA-Cr(VI)过程中的可溶性物质分子质量分布"

图6

热活化PS体系单独处理PVA及PVA-Cr(VI)后的废水残余物质"

图7

热活化PS体系协同处理PVA和Cr(VI)的可能机制"

[1] LI G, ZHU W, CHAI X, et al. Partial oxidation of polyvinyl alcohol using a commercially available DSA anode[J]. Journal of Industrial and Engineering Chemistry, 2015, 31: 55-60.
doi: 10.1016/j.jiec.2015.05.042
[2] 沈忱思, 王曼, 徐晨烨, 等. 退浆废水中自由基引发的聚乙烯醇交联沉淀研究[J]. 纺织学报, 2021, 42(11): 117-123.
SHEN Chensi, WANG Man, XU Chenye, et al. Radical-induced crosslinking of poly(vinyl alcohol) from desizing wastewater[J]. Journal of Textile Research, 2021, 42(11): 117-123.
[3] SUN W, CHEN L, WANG J. Degradation of PVA(polyvinyl alcohol) in wastewater by advanced oxidation processes[J]. Journal of Advanced Oxidation Technologies, 2017. DOI: 10.1515/jaots-2017-0018.
doi: 10.1515/jaots-2017-0018
[4] RONG D, USUI K, MOROHOSHI T, et al. Symbiotic degradation of polyvinyl alcohol by Novosphingobium sp. and Xanthobacter flavus[J]. Journal of Environmental Biotechnology, 2009, 9: 131-134.
[5] 李伟, 张正桥, 吴兰娟, 等. 双亲性淀粉浆料的研究进展[J]. 纺织学报, 2020, 41(7): 182-187.
LI Wei, ZHANG Zhengqiao, WU Lanjuan, et al. Research progress in amphiphilic starch sizing agents[J]. Journal of Textile Research, 2020, 41(7): 182-187.
doi: 10.1177/004051757104100216
[6] PAN Y, LIU Y, WU D, et al. Application of Fenton pre-oxidation, Ca-induced coagulation, and sludge reclamation for enhanced treatment of ultra-high concentration poly(vinyl alcohol) wastewater[J]. Journal of Hazardous Material, 2020. DOI: 10.1016/j.jhazmat.2019.121866.
doi: 10.1016/j.jhazmat.2019.121866
[7] 马慧婕, 沈忱思, 章耀鹏, 等. 纺织工业产排污特征与水污染治理技术进展[J]. 环境科学研究, 2020, 33(11): 2529-2539.
MA Huijie, SHEN Chensi, ZHANG Yaopeng, et al. Production and pollution discharge characteristics and progress in the water pollution treatment technologies of the textile industry[J]. Research of Environmental Sciences, 2020, 33(11): 2529-2539.
[8] 曾淦宁, 丁一梅, 葛战宇, 等. 碱性条件下FeCl3-ZnCl2铜藻基活性炭去除Cr(VI)[J]. 工业水处理, 2018, 38(8): 15-18.
ZENG Ganning, DING Yimei, GE Zhanyu, et al. Adsorption capability of FeCl3-ZnCl2 activated Sargassum horneri based activated carbon for Cr(VI)[J]. Industrial Water Treatment, 2018, 38(8): 15-18.
[9] BEN Halima N. Poly(vinyl alcohol): review of its promising applications and insights into bio-degradation[J]. RSC Advances, 2016, 6(46): 39823-39832.
doi: 10.1039/C6RA05742J
[10] CHEN L, REDDY N, YANG Y. Remediation of environmental pollution by substituting poly(vinyl alcohol) with biodegradable warp size from wheat gluten[J]. Environmental Science & Technology, 2013, 47(9): 4505-4511.
doi: 10.1021/es304429s
[11] WEI Y, FU J, WU J, et al. Bioinformatics analysis and characterization of highly efficient polyvinyl alcohol(PVA)-degrading enzymes from the novel PVA degrader Stenotrophomonas rhizophila QL-P4[J]. Appl Environ Microbiol, 2018. DOI: 10.1128/AEM.01898-17.
doi: 10.1128/AEM.01898-17
[12] 章耀鹏, 沈忱思, 徐晨烨, 等. 纺织工业典型污染物治理技术回顾[J]. 纺织学报, 2021, 42(8): 24-33.
ZHANG Yaopeng, SHEN Chensi, XU Chenye, et al. Review of treatment technology for typical pollutants in textile industry[J]. Journal of Textile Research, 2021, 42(8): 24-33.
[13] YE B, LI Y, CHEN Z, et al. Degradation of polyvinyl alcohol (PVA) by UV/chlorine oxidation: radical roles, influencing factors, and degradation pathway[J]. Water Research, 2017, 124: 381-387.
doi: S0043-1354(17)30423-2 pmid: 28783494
[14] SUN W, CHEN L, ZHANG Y, et al. Synergistic effect of ozonation and ionizing radiation for PVA decomposition[J]. Journal of Environmental Sciences, 2015, 34: 63-67.
doi: 10.1016/j.jes.2015.01.020
[15] OH S Y, KIM H W, PARK J M, et al. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron[J]. Journal of Hazardous Materials, 2009, 168(1): 346-351.
doi: 10.1016/j.jhazmat.2009.02.065
[16] GUO Y, LAI B, ZHOU Y-X. Pretreatment of polyvinyl alcohol-containing desizing wastewater by the Fenton process: oxidation and coagulation[J]. Environmental Engineering Science, 2016, 33(3): 160-166.
doi: 10.1089/ees.2015.0327
[17] 潘玉婷, 李方, 沈忱思, 等. 退浆废水中聚乙烯醇的膜蒸馏-超滤二级膜浓缩[J]. 纺织学报, 2018, 39(11): 96-102.
PAN Yuting, LI Fang, SHEN Chensi, et al. Two-stage membrane concentration of poly(vinyl alcohol) in desizing wastewater by membrane distillation and ultrafiltration[J]. Journal of Textile Research, 2018, 39(11): 96-102.
[18] ZIMMERMANN W, SCHINDLER H. Process for the separation of polyvinyl alcohol from aqueous solutions: 4166033[P]. 1979-08-28.
[19] 郭丽, 奚旦立, 马春燕. 退浆废水中聚乙烯醇回收技术的研究[J]. 净水技术, 2008, 27(1): 58-60.
GUO Li, XI Danli, MA Chunyan. Study on recovery method of polyvinyl alcohol in desizing wastewater[J]. Water Purifacation Technology, 2008, 27(1): 58-60.
[20] 程爱华, 包乐. 高级还原技术降解水中Cr(Ⅵ)的性能及机理[J]. 工业水处理, 2019, 39(4): 37-40.
CHENG Aihua, BAO Le. Capability and mechanism of the advanced reduction technology for Cr(VI) degradation in water[J]. Industrial Water Treatment, 2019, 39(4): 37-40.
[21] HORI M, SHOZUGAWA K, MATSUO M. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis[J]. Journal of Hazardous Materials, 2015, 285: 140-147.
doi: 10.1016/j.jhazmat.2014.11.047 pmid: 25497027
[22] LI J, TANG C, ZHANG M, et al. Exploring the Cr(VI) removal mechanism of Sporosarcina saromensis M52 from a genomic perspective[J]. Ecotoxicology and Environmental Safety, 2021. DOI: 10.1016/j.ecoenv.2021.112767.
doi: 10.1016/j.ecoenv.2021.112767
[23] LI X, WANG C, LIU F, et al. Electrocatalytic reduction of Cr(VI) over heterophase MoS2 film electrode[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.126556.
doi: 10.1016/j.cej.2020.126556
[24] ZHENG R, LI J, ZHU R, et al. Enhanced Cr(VI) reduction on natural chalcopyrite mineral modulated by degradation intermediates of RhB[J]. Journal of Hazardous Materials, 2022. DOI: 10.1016/j.jhazmat.2021.127206.
doi: 10.1016/j.jhazmat.2021.127206
[25] DING J, PAN Y, LI L, et al. Synergetic adsorption and electrochemical classified recycling of Cr(VI) and dyes in synthetic dyeing wastewater[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123232.
doi: 10.1016/j.cej.2019.123232
[26] CHEN D, MA X, ZHOU J, et al. Sulfate radical-induced degradation of acid orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process[J]. Journal of Hazardous Material, 2014, 279: 476-484.
doi: 10.1016/j.jhazmat.2014.06.004
[27] RIYAJAN S A, SASITHORNSONTI Y. Chemical crosslink degradable PVA aqueous solution by potassium persulphate[J]. Journal of Polymers and the Environment, 2013, 21(2): 472-478.
doi: 10.1007/s10924-012-0510-x
[28] GRIMM L, HILKE K J, SCHARRER E. The mechanism of the cross linking of poly(vinyl alcohol) by ammonium dichromate with UV-light[J]. Journal of the Electrochemical Society, 1983, 130(8): 1767-1771.
doi: 10.1149/1.2120089
[29] 束嘉秀, 董亦斌, 张惠芬. 分光光度法直接测定水中聚乙烯醇(PVA)含量的研究[J]. 昆明理工大学学报(理工版), 2003, 28(5): 127-130.
SHU Jiaxiu, DONG Yibin, ZHANG Huifen. Research on the direct determination of PVA in waste water by spectrophotometric analysis with coloration of boric acid and iondine[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2003, 28(5): 127-130.
[30] LI F, MA H, SHEN C, et al. From the accelerated production of ·OH radicals to the crosslinking of polyvinyl alcohol: the role of free radicals initiated by persulfates[J]. Applied Catalysis B: Environmental, 2021. DOI: 10.1016/j.apcatb.2020.119763.
doi: 10.1016/j.apcatb.2020.119763
[31] ZHANG J, CHEN L, YIN H, et al. Mechanism study of humic acid functional groups for Cr(VI) retention: two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis[J]. Environmental Pollution, 2017, 225: 86-92.
doi: 10.1016/j.envpol.2017.03.047
[32] JOHNSON R L, TRATNYEK P G, JOHNSON R O B. Persulfate persistence under thermal activation conditions[J]. Environmental Science & Technology, 2008, 42(24): 9350-9356.
doi: 10.1021/es8019462
[33] LIANG C, SU H-W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558-5562.
doi: 10.1021/ie9002848
[34] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: a review[J]. Chemosphere, 2016, 151: 178-188.
doi: 10.1016/j.chemosphere.2016.02.055 pmid: 26938680
[35] CHEN C, WU Z, ZHENG S, et al. Comparative study for interactions of sulfate radical and hydroxyl radical with phenol in the presence of nitrite[J]. Environmental Science & Technology, 2020, 54(13): 8455-8463.
doi: 10.1021/acs.est.0c02377
[36] ULANSKI P, BOTHE E, HILDENBRAND K, et al. Radiolysis of poly(acrylic acid) in aqueous solution[J]. Radiation Physics and Chemistry, 1995, 46(4): 909-912.
doi: 10.1016/0969-806X(95)00290-E
[37] VON Sonntag C. Free-radical-induced chain scission and cross-linking of polymers in aqueous solution: an overview[J]. Radiation Physics and Chemistry, 2003, 67(3): 353-359.
doi: 10.1016/S0969-806X(03)00066-5
[1] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[2] 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140.
[3] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[4] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[5] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[6] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
[7] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[8] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[9] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
[10] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[11] 禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(03): 139-145.
[12] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[13] 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
[14] 沈忱思, 王曼, 徐晨烨, 王华平, 李方. 退浆废水中自由基引发的聚乙烯醇交联沉淀研究[J]. 纺织学报, 2021, 42(11): 117-123.
[15] 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!