纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 151-159.doi: 10.13475/j.fzxb.20220906301
肖云超1,2, 杨雅茹1(), 郭健鑫1, 王童谣1, 田强3
XIAO Yunchao1,2, YANG Yaru1(), GUO Jianxin1, WANG Tongyao1, TIAN Qiang3
摘要:
针对涤纶织物易燃、熔滴严重的问题,采用甲基膦酸(5-乙基-2-甲基-2-氧代-1,3,2-二氧磷杂环己-5-基)甲基甲基酯(EMD)和N-苯基马来酰亚胺(N-PMI)构建新型磷-氮协同阻燃体系,采用浸轧法对涤纶织物进行后整理,研究其阻燃性能和阻燃机制。结果表明:EMD和N-PMI存在协同阻燃作用,整理后涤纶织物的极限氧指数达到35.1%,燃烧过程中不再产生熔滴,热释放速率峰值和总热释放量比纯涤纶织物分别降低了48.6%和20.8%,且力学性能和透气性不受明显影响;整理后涤纶织物表现出典型的凝聚相阻燃机制,与纯涤纶织物相比,其燃烧生成炭层的致密性、连续性及热稳定性均显著提高,从而能起到良好的屏障作用,而其抗熔滴性提高的主要原因则是伴随着熔融发生的高温自交联。
中图分类号:
[1] | KUNDU C K, LI Z, SONG L, et al. An overview of fire retardant treatments for synthetic textiles: from traditional approaches to recent applications[J]. European Polymer Journal, 2020. DOI:10.1016/j.eurpolymj.2020.109911. |
[2] | BALBAS D Q, CIRRINCIONE C, CIMÒ M, et al. Evaluation of an eco-friendly flame retardant treatment applied to cellulosic textiles used for the conservation of historical tapestries[J]. Polymer Degradation and Stability, 2022.DOI:10.1016/j.polymdegradstab.2022.109907. |
[3] | 陈龙, 周哲, 张军, 等. 废旧棉与涤纶纺织品化学法循环再生利用的研究进展[J]. 纺织学报, 2022, 43(5): 43-48. |
CHEN Long, ZHOU Zhe, ZHANG Jun, et al. Research progress in chemical recycling of waste cotton and polyester textiles[J]. Journal of Textile Research, 2022, 43(5): 43-48. | |
[4] | TAO Y, LIU C, LI P, et al. A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism[J]. Progress In Organic Coatings, 2021. DOI:10.1016/j.porgcoat.2020.105971. |
[5] | 薛宝霞, 史依然, 张凤, 等. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(5): 130-135. |
XUE Baoxia, SHI Yiran, ZHANG Feng, et al. Preparation flame retardant polyester fabric modified with halogen-free ferric oxide and its property[J]. Journal of Textile Research, 2022, 43(5): 130-135. | |
[6] | ZHANG C, ZHANG C, HU J, et al. Flame-retardant and anti-dripping coating for PET fabric with hydroxyl-containing cyclic phosphoramide[J]. Polymer Degradation and Stability, 2021. DOI:10.1016/j.polymdegradstab.2021.109699. |
[7] | KIM T, HONG K, THI N V, et al. The effect of DBD plasma activation time on the dyeability of woven polyester fabric with disperse dye[J]. Polymers, 2021. DOI:10.3390/polym13091434. |
[8] | NI Y P, WU W S, CHEN L, et al. How hydrogen bond interactions affect the flame retardancy and anti-dripping performances of PET[J]. Macromolecular Materials and Engineering, 2019. DOI:10.1002/mame.201900661. |
[9] |
SALMEIA K A, GOONEIE A, SIMONETTI P, et al. Comprehensive study on flame retardant polyesters from phosphorus additives[J]. Polymer Degradation and Stability, 2018, 155: 22-34.
doi: 10.1016/j.polymdegradstab.2018.07.006 |
[10] | 黄益婷, 程献伟, 关晋平, 等. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(6): 94-99. |
HUANG Yiting, CHENG Xianwei, GUAN Jinping, et al. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric[J]. Journal of Textile Research, 2022, 43(6): 94-99. | |
[11] | DING F, ZHANG S, REN X, et al. Synthesis of phosphorus-containing flame retardant monomer and grafting of PET fabrics via electron beam irradiation[J]. AATCC Journal of Research, 2020, 7(4): 15-21. |
[12] | ZHAO H B, WANG Y Z. Design and synthesis of PET-based copolyesters with flame-retardant and antidripping performance[J]. Macromolecular Rapid Communications, 2017. DOI:10.1002/marc.201700451. |
[13] |
WANG C, WU L, DAI Y, et al. Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET[J]. Polymer Degradation and Stability, 2018, 154: 239-247.
doi: 10.1016/j.polymdegradstab.2018.06.005 |
[14] |
WANG L S, WANG X L, YAN G L. Synthesis, characterization and flame retardance behaviour of poly(ethylene terephthalate) copolymer containing triaryl phosphine oxide[J]. Polymer Degradation and Stability, 2000, 69(1): 127-130.
doi: 10.1016/S0141-3910(00)00050-1 |
[15] |
CHEN L, ZHAO H, NI Y, et al. 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking[J]. Journal of Materials Chemistry A, 2019, 7: 17037-17045.
doi: 10.1039/C9TA04187G |
[16] |
PIZARRO G, MARAMBIO O G, JERIA-ORELL M, et al. Nanocomposites based on self-assembly poly(hydroxypropyl methacrylate)-block-poly(N-phen-ylmaleimide) and Fe3O4-NPs thermal stability, morphological characterization and optical properties[J]. Chemical Physics Letters, 2018, 693: 183-187.
doi: 10.1016/j.cplett.2018.01.030 |
[17] |
DONG L P, DENG C, LI R, et al. Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system[J]. RSC Advances, 2016, 6(36): 30436-30444.
doi: 10.1039/C6RA00164E |
[18] | 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010: 291-292. |
WENG Shifu. Fourier transform infrared spectro-scopy[M]. 2nd ed. Beijing: Chemical Industry Press, 2010: 291-292. | |
[19] |
WANG J, ZHAO X, YU Q, et al. Inverse modeling of thermal decomposition of flame-retardant PET fiber with model-free coupled with particle swarm optimization algorithm[J]. ACS Omega, 2021, 6(21): 13626-13636.
doi: 10.1021/acsomega.1c00599 pmid: 34250328 |
[20] | 罗渝然. 化学键能数据手册[M]. 北京: 科学出版社, 2005:223-225. |
LUO Yuran. Chemical bond energy data manual[M]. Beijing: Science Press, 2005:223-225. | |
[21] |
DONG X, CHEN L, DUAN R T, et al. Phenylmaleimide-containing PET-based copolyester: cross-linking from 2π+π cycloaddition toward flame retardance and anti-dripping[J]. Polymer Chemistry, 2016, 7(15): 2698-2708.
doi: 10.1039/C6PY00183A |
[22] | SONG W, HE Y, WU Y, et al. Characterization of burning behaviors and particulate matter emissions of crop straws based on a cone calorimeter[J]. Materials, 2021. DOI:10.3390/ma14123407. |
[23] |
CHEN Y, WEI W, YONG Q, et al. Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid compo-sites[J]. Polymer Degradation and Stability, 2017, 140: 166-175.
doi: 10.1016/j.polymdegradstab.2017.04.024 |
[24] | 郭超, 辛菲, 钱立军, 等. 无卤阻燃热塑性聚酯的研究进展[J]. 中国塑料, 2017, 31(10): 12-19. |
GUO Chao, XIN Fei, QIAN Lijun, et al. Research progress on halogen-free flame retardant thermoplastic polyester[J]. China Plastics, 2017, 31(10): 12-19. | |
[25] |
YONG Q, QIAN L, WANG X. Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour[J]. RSC Advances, 2016, 6(61): 56018-56027.
doi: 10.1039/C6RA10752D |
[26] |
DU Y Y, JIANG X G, LU G J, et al. TG-DSC and FTIR study on pyrolysis of irradiation cross-linked polyethylene[J]. Journal of Material Cycles and Waste Management, 2017, 19:1400-1404.
doi: 10.1007/s10163-016-0530-z |
[1] | 葛怀富, 吴伟, 王健, 徐红, 毛志平. 5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用[J]. 纺织学报, 2024, 45(01): 120-127. |
[2] | 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160. |
[3] | 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47. |
[4] | 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82. |
[5] | 魏建斐, 马国聪, 张安莹, 吴雨航, 崔晓晴, 王锐. 明胶基碳点的热解法制备及其阻燃与防伪应用[J]. 纺织学报, 2023, 44(12): 106-114. |
[6] | 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122. |
[7] | 张文琪, 李莉莉, 胡泽旭, 魏丽菲, 相恒学, 朱美芳. 基于均三嗪环结构的聚己内酰胺6复合树脂制备及其抗熔滴阻燃特性[J]. 纺织学报, 2023, 44(11): 1-8. |
[8] | 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126. |
[9] | 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152. |
[10] | 聂文琪, 许帅, 高俊帅, 方斌, 孙江东. 聚(3-羟基丁酸-3-羟基戊酸酯)改性涤纶长丝的降解性能[J]. 纺织学报, 2023, 44(09): 35-42. |
[11] | 尚小愉, 朱坚, 王滢, 张先明, 陈文兴. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(07): 1-9. |
[12] | 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167. |
[13] | 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174. |
[14] | 谭启飞, 陈梦莹, 马晟晟, 孙明祥, 代春鹏, 罗仑亭, 陈益人. 湖羊毛非织造阻燃吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(05): 147-154. |
[15] | 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170. |
|