纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 145-152.doi: 10.13475/j.fzxb.20221001001

• 服装工程 • 上一篇    下一篇

青年女性胸部出汗分布和出汗率的测定

王兆芳1, 丁波1, 张辉1,2(), 陈思璘1   

  1. 1.北京服装学院 服装艺术与工程学院, 北京 100020
    2.北服·爱慕内衣研究院, 北京 100020
  • 收稿日期:2022-10-08 修回日期:2023-09-13 出版日期:2023-12-15 发布日期:2024-01-22
  • 通讯作者: 张辉(1966—),男,教授,博士。主要研究方向为服装工效学。E-mail:gdcad@126.com
  • 作者简介:王兆芳(1998—),女,硕士生。主要研究方向为服装舒适性与功能服装研究。
  • 基金资助:
    北京服装学院爱慕内衣研究院研发项目(HXKY05190336)

Determination of sweating locations and sweating rate of young female breasts

WANG Zhaofang1, DING Bo1, ZHANG Hui1,2(), CHEN Silin1   

  1. 1. College of Fashion Arts and Engineering, Beijing Institute of Fashion Technology, Beijing 100020, China
    2. BIFT·Aimer Underwear Research Institute, Beijing 100020, China
  • Received:2022-10-08 Revised:2023-09-13 Published:2023-12-15 Online:2024-01-22

摘要:

针对目前关于人体出汗的研究均未涉及到女性胸部出汗的细化,从而导致关于女性文胸热湿优化设计并无科学的出汗率数值参考的问题,探究了青年女性胸部出汗分布规律、局部出汗率差异和整体出汗率大小。实验选取15名青年女性受试者,在温度为26 ℃、相对湿度为50%的环境下,采用本文提出的新型“三明治”结构吸汗贴测定胸部整体出汗率,进行代谢率为50~60 W/m2的静坐和系列代谢率为200~250 W/m2的中高强度运动,随后得到胸部出汗分布规律,测定出胸部非显性出汗率、显性出汗率、不同区域出汗率和不同运动阶段出汗率的变化规律。结果表明:显性出汗过程中,乳房中心点(BP点)周围环状区域、胸部边缘环状区域(尤其靠近前中)的出汗率相对较高并较先出汗;静坐状态下胸部非显性出汗率为(0.004 7±0.003 7) mg/(min·cm2),中高强度运动状态下胸部显性出汗率为(0.405 5±0.178) mg/(min·cm2); 局部区域显性出汗率中,靠近前中的胸部出汗率最大为1.844 mg/(min·cm2),其次是BP点周围为0.664 mg/(min·cm2), 再是胸部上边缘和下边缘。此出汗分布规律可指导文胸罩杯结构优化和通风透气孔分布设计,胸部出汗率可为文胸罩杯材料透湿性能指标的选择和新材料开发提供理论参考,助力企业开发新型透湿性能卓越的文胸产品。

关键词: 胸部出汗率, 胸部出汗分布, 显性出汗率, 非显性出汗率, 文胸热湿舒适性, 文胸设计

Abstract:

Objective Current studies on human sweating have not involved the investigation of the distribution and sweating rate of women's breast, resulting in lack of systematic and scientific guidance on women's bra design. To fill this knowledge gap, this research aims to investigate the distribution of breast sweating locations, sweating rates in different parts of breast and the average sweating rate, taking young women as research objects.
Method Fifteen young female participants were selected to proceed a series of sedentary sitting with a metabolic rate of 50-60 W/m2 and medium-high intensity exercise with a metabolic rate of 200-250 W/m2 at 26 ℃ and 50% RH environment condition. A new ″sandwich″ structured sweat absorptive patch proposed in this research was used to measure the overall distribution of breast sweating, dominant and recessive sweating rate and sweating rate variation under different exercise conditions (Fig. 1). A 1 cm × 1 cm medical sweat absorptive patch was used to measure the sweating rate in seven regions of A-G of breast (Fig. 6). Mean filtering, threshold segmentation and Sobel operator digital image processing were carried out on the obtained images of breast sweating distribution, and paired T test was performed on the obtained sweating rates in different areas to analyze their differences.
Results No significant difference in the sweating rate of left and right breasts was found after independent samples test. The distribution of dominant breast sweating was identified. The annular region around BP (breast point) with a radius of about 1 cm was the first to sweat, then the rim ring area near the front chest and armpit with a radius of about 0.5 cm began to sweat soon afterwards. The above two annular regions continued to expand until the entire cup was soaked through (Fig. 4). Thermal imaging of female upper-body was taken before and after the 30 min medium-high intensity exercise, which showed that the temperature of front chest and mammary gland region were the highest resulting in early sweating. The results showed significant differences in sweating rates of breast areas A to G according to the Kruskal-Wallis H-test, the median test, and the Yorkhale-Tapastra test (P<0.05). The front chest region and annular region of BP were the two centers of high sweating. The maximum sweating rate near the front chest was 1.844 mg/(min·cm2), followed by sweating rate at 0.664 mg/(min·cm2) around the BP, and then the upper and lower edges of the breast (Tab. 5). It was found that breast average recessive sweating rate was (0.004 7±0.003 7) mg/(min·cm2) in sedentary state for six h, and the average dominant sweating rate was (0.405 5±0.178 4) mg/(min·cm2) in medium-high intensity exercise state for 30 min. During six 10-min intervals of medium-high intensity exercise, average breast sweating rate increased with the progress of exercise, reaching a peak at 0.409 mg/(min·cm2) at the 40th min, and finally slowly decreased to 0.356 mg/(min·cm2) due to the physical limitations and increase of fatigue.
Conclusion It is concluded that the annular region around the BP point and the annular region at the edge of the breast (especially near the front chest area) have relatively high sweating rate and thus perspired earlier. Therefore, it is suggested that in the moisture permeability design of the bra fabric, such as certain ventilation holes can be set in the above areas to accelerate the evaporation of sweat, which can improve the overall thermal and wet comfort of the bra. For daily wearing bras, it is suggested that the innovation of fabric fiber and the three-dimensional structure design of cup padding materials can refer to the recessive sweat rate. For sports bras, it is recommended that the optimal design of fabrics and cup padding materials should refer to the above mean and maximum sweat rate. The results from this research may be used to guide the optimal design ventilation hole distribution and to provide theoretical reference for the selection of moisture permeability index of bra cup material and the development of new materials for commercial purposes.

Key words: breast sweat rate, breast sweat distribution, dominant sweating rate, recessive sweating rate, bra thermal-wet comfort, bra design

中图分类号: 

  • TS941.17

图1

“三明治”结构吸汗贴示意图"

表1

“三明治”结构材料参数"

三层结构材料 材料说明
紫色纯棉模杯 11.7 tex平纹机织布、100%棉、面密度100 g/m2
聚酯薄膜杯 成分:聚对苯二甲酸乙二醇酯,厚度0.12 mm
海绵胸垫 发泡型聚氨酯(PU)

图2

实验文胸正背面示意图"

表2

运动状态说明表"

实验类别 阶段
编点
时间/
min
状态 代谢率/
(W·m-2)
备注
出汗分布 T1 5 运动 200~250
T2 8 运动 200~250
T3 11 运动 200~250
T4 14 运动 200~250
T5 16 运动 200~250
T6 20 运动 200~250
间歇运动 T1 10 运动 200~250 循环6次
T2 2 休息 50~60
静坐状态 T1 360 静坐 50~60
连续运动 T1 30 运动 200~250
不同区域 T1 30 运动 200~250 记录热成像

表3

左右胸出汗率组统计与夏皮洛-威尔克正态性检验"

组别 左右
均值/
(mg·(min·cm2)-1)
S-W正态性检验
统计 显著性
静坐 4.71×10-3 0.910 0.133
4.56×10-3 0.928 0.259
间歇中强
度运动
3.24×10-1 0.978 0.128
2.99×10-1 0.980 0.192
连续中强
度运动
4.13×10-1 0.892 0.073
3.98×10-1 0.894 0.078

表4

左右胸出汗率独立样本检验"

组别 假设 莱文方差等
同性检验
显著性
平均值等同性T检验
自由度 显著性(双尾)
静坐 假定等方差 0.871 28.00 0.871
不假定等方差 27.91 0.871
间歇中强
度运动
假定等方差 0.210 178.00 0.238
不假定等方差 175.00 0.238
连续中强
度运动
假定等方差 0.832 28.00 0.819
不假定等方差 27.77 0.819

图3

数字图像处理过程"

图4

不同运动阶段胸部出汗分布图谱"

图5

运动前后胸部热成像图"

图6

胸部不同区域编号示意图"

表5

胸部不同区域出汗率描述统计"

区域
编号
出汗率/(mg·(min·cm2)-1)
均值 中位数 标准偏差 最小值 最大值 排序
A 1.844 1.767 0.714 0.633 3.433 1
B 0.578 0.583 0.215 0.067 1.000 4
C 0.520 0.483 0.167 0.167 0.833 5
D 0.646 0.633 0.243 0.233 1.133 3
E 0.488 0.417 0.277 0.100 1.100 6
F 0.391 0.400 0.087 0.233 0.567 7
G 0.664 0.643 0.655 0.333 4.000 2

图7

胸部不同区域出汗率箱形图和正态曲线图"

图8

配对T检验P值散点图"

表6

不同状态胸部出汗率描述统计"

状态 出汗率/(mg·(min·cm2)-1) 标准
偏差
最小值 最大值 均值
静坐 0.000 9 0.013 6 0.004 7 0.003 7
中高强度运动 0.137 4 0.910 4 0.405 5 0.178 4

表7

间歇中高强度运动胸部出汗率描述统计表"

运动
阶段
运动时
间/min
出汗率/(mg·(min·cm2)-1)
均值 中位数 标准差 最小值 最大值
T1 10 0.118 0.111 0.063 0.033 0.207
T2 20 0.254 0.259 0.071 0.085 0.397
T3 30 0.343 0.342 0.071 0.129 0.453
T4 40 0.408 0.371 0.110 0.254 0.658
T5 50 0.391 0.384 0.138 0.182 0.660
T6 60 0.356 0.329 0.145 0.167 0.728
[1] 张辉, 黎焰. 服装工效学[M]. 3版. 北京: 中国纺织出版社, 2021:22-25.
ZHANG Hui, LI Yan. Clothing ergonomics[M]. 3rd ed. Beijing: China Textile & Apparel Press, 2021:22-25.
[2] 孟祥红. 运动文胸热湿舒适性研究及设计[D]. 杭州: 苏州大学, 2015:6-8.
MENG Xianghong. Study on thermal comfort of sports bras[D]. Hangzhou: Soochow University, 2015:6-8.
[3] 孟昭, 张虹宇, 陈雪梅, 等. 洞洞杯文胸:中国,202122244705.6[P].2022-02-22.
MENG Zhao, ZHANG Hongyu, CHEN Xuemei, et al. The crocs bra:202122244705.6[P].2022-02-22.
[4] 夏海鸥, 彭萍. 一种具有半隐形冲孔的下厚型模杯:202122319169.1[P].2022-01-28.
XIA Haiou, PENG Ping. A low thickness cup withsemi-invisible punch:202122319169.1[P].2022-01-28.
[5] AYRES B, WHITE J, HEDGER W, et al. Female upper body and breast skin temperature and thermal comfort following exercise[J]. Ergonomics, 2013, 56(7):1194-1202.
[6] 杜琴枚, 戴晓群. 运动文胸衬垫材料对人体体温调节的影响[J]. 针织工业, 2018(7):59-62.
DU Qinmei, DAI Xiaoqun. Influence of cup padmaterial of sports bra on body thermoregulation[J]. Knitting Industries, 2018(7):59-62.
[7] LIU X, JI X, OCRAN F M, et al. Effects of ventilation design on thermal comfort performance and breast displacement for sports bras[J]. Textile Research Journal, 2022, 22(8):37-42.
[8] 迟彦艳. 中国成年男性人体皮肤汗腺和毛囊的分布研究[D]. 大连: 大连医科大学, 2009:28-29.
CHI Yanyan. Study on distribution of sweat glands and hair follicles on the bodies of chinese male adults[D]. Dalian: Dalian Medical University, 2009:28-29.
[9] 张文欢, 钱晓明, 范金土, 等. 人体出汗率分布的研究进展[J]. 纺织学报, 2018, 39(8):181-184.
ZHANG Wenhuan, QIAN Xiaoming, FAN Jintu, et al. Research progress on sweating rate distribution of human body[J]. Journal of Textile Research, 2018, 39(8):181-184.
[10] TAYLOR N A, MACHADO-MOREIRA C A. Regional variations in transepidermal water loss, eccrine sweatgland density, sweat secretion rates and electrolyte composition in resting and exercising humans[J]. Extreme Physiology & Medicine, 2013, 2(1):4-5.
[11] MACHADO-MOREIRA C A, SMITH F M, VAN A M, et al. Sweat secretion from the torso during passively-induced and exercise-related hyperthermia[J]. European Journal of Applied Physiology, 2008, 104(2):265-270.
[12] 魏洋. 人体全身及上身局部出汗率的测定[D]. 上海: 东华大学, 2012:15-17.
WEI Yang. The measurement of whole body and regional upper body sweat rates[D]. Shanghai: Donghua University, 2012:15-17.
[13] HAVENITH G, FOGARTYA, BARTLETT R, et al. Male and female upper body sweat distribution during running measured with technical absorbents[J]. European Journal of Applied Physiology, 2008, 104(2):245-255.
[14] 郝存英. 运动文胸的热湿舒适性研究与设计[D]. 杭州: 苏州大学, 2019:4-8.
HAO Cunying. Thermal comfort design of sports bras[D]. Hangzhou: Soochow University, 2019:4-8.
[15] 黄文举, 陈卓佳, 李健创, 等. Sobel与阈值相融合的边缘检测算法[J]. 企业技术开发, 2016, 35(22):46-47, 54.
HUANG Wenju, CHEN Zhuojia, LI Jianchuang, et al. A new edge detection algorithm combining sobel and threshold[J]. Technological Development of Enterprise, 2016, 35(22):46-47, 54.
[16] PENG O T, CHAIKAN P. High performance and energy efficient sobel edge detection[J]. Microprocessors and Microsystems, 2021.DOI:10.1016/j.micpro.2021.104368.
[17] 宫保强, 姚宝国, 周子晗. 模拟人体出汗的仿生皮肤[J]. 传感技术学报, 2022, 35(1):14-21.
GONG Baoqiang, YAO Baoguo, ZHOU Zihan. Ionicskin of simulating human sweat[J]. Chinese Journal of Sensors and Actuators, 2022, 35(1):14-21.
[1] 张文欢 钱晓明 范金土 师云龙 牛丽. 人体出汗率分布的研究进展[J]. 纺织学报, 2018, 39(08): 179-184.
[2] 张文欢 钱晓明 范金土 牛丽 师云龙. 成年男性各部位非显性出汗率的比例关系[J]. 纺织学报, 2018, 39(06): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!