纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 74-82.doi: 10.13475/j.fzxb.20221001701

• 纺织工程 • 上一篇    下一篇

基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能

艾靓雯1, 卢东星1, 廖师琴2, 王清清1,2()   

  1. 1.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    2.江西服装学院 江西省现代服装工程技术研究中心, 江西 南昌 330201
  • 收稿日期:2022-10-08 修回日期:2023-02-17 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 王清清(1987—),女,副教授,博士。主要研究方向为功能纳米纤维材料。E-mail:qqwang@jiangnan.edu.cn
  • 作者简介:艾靓雯(1999—),女,硕士生。主要研究方向为智能纺织材料。
  • 基金资助:
    江苏省先进纺织工程技术中心资助项目(XJFZ/2021/4);江西省自然科学基金项目(20212BAB214016)

Preparation and strain sensing properties of yarn sensor prepared by in-situ freezing interfacial polymerization

AI Jingwen1, LU Dongxing1, LIAO Shiqin2, WANG Qingqing1,2()   

  1. 1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, Jiangxi 330201, China
  • Received:2022-10-08 Revised:2023-02-17 Published:2024-01-15 Online:2024-03-14

摘要:

为解决传统传感器柔性差、制备成本高等问题,以涤纶包氨纶纱为基材,通过聚多巴胺修饰和聚吡咯的原位冷冻界面聚合制备了具有快速响应、稳定的电力学性能和循环耐用传感性能的柔性纱线应变传感器。利用扫描电子显微镜、X射线能谱分析仪、傅里叶红外光谱仪对导电纱的微观形貌和化学结构进行表征,探究了不同拉伸应变下导电纱的电阻变化性能。结果显示:在吡咯单体与三氯化铁的量比为1的最佳配比下,在不同的拉伸范围、拉伸速度下,纱线传感器电阻变化稳定,拉伸形变小于6%时,灵敏度达4.039;在10%应变下,响应时间为166.67 ms;此外,纱线循环拉伸1 000次后仍具有优异的稳定性。导电纱可通过编织、针织或刺绣等方式与织物相结合,实时监测人体关节活动,广泛应用于人体运动识别和远程医疗服务等领域。

关键词: 聚多巴胺, 聚吡咯, 涤纶包氯纶, 弹性纱, 导电性能, 原位冷冻界面聚合法, 纱线应变传感器

Abstract:

Objective In order to solve the problems of poor flexibility and limited working range of conventional rigid sensors, smart sensoring devices are constantly shifting to miniaturization, flexibility and portability. Flexible wearable sensors can monitor human signals accurately and quickly, facilitating fitting into the human body or combine with clothing. The yarn-based flexible strain sensors have attracted much research attention to the engineering of flexible strain transducers taking advantages of their processability, high elasticity and wide adaptability.

Method With polyester-coated spandex yarn as the substrate, a layer of polydopamine (PDA) was deposited on the surface of the substrate by impregnation to improve the adhesion of polypyrrole (PPy) to the substrate. Then, PPy was synthesized by in-situ freezing interface polymerization to effectively avoid unfavorable cross-linking or branching in the polymer, improve the conductivity, and obtain a flexible yarn strain sensor aiming for excellent tensile strain sensing performance. The conductive yarn's microscopic morphology and chemical structure were characterized by scanning electron microscopy, X-ray spectroscopy and Fourier transform infrared spectroscopy.

Results The characterization results all proved the successful load of PDA and PPy. After PDA modification, a uniform and uneven PDA coating layer was formed on the surface of the yarn, and the hydrophilicity of the fiber surface was greatly improved. After in-situ polymerization of PPy, a granular PPy conductive layer was observed on the surface of the yarn, forming a conductive path. With the optimal ratio of n(pyrrole)/n(ferric chloride) of 1, the yarn resistance value was the lowest at 0.33 kΩ/cm. Weights of different mass were loaded on the same section of the yarn, and as the weight mass increased, the tensile deformation of the yarn gradually increased, resulting in a gradual increase in the yarn resistance value. Three stages of the main resistance were observed in the diagram of relative resistance and strain. In the first stage, the relative resistance change increased very rapidly at a strain of 0% to 6%, with a gage factor (GF) value of 4.039. In the strain range of 6% to 18%, the relative resistance change increased gradually slowing down as the strain increased, and the GF value was 1.006. At 18% to 30% strain, the relative resistance change increased slowly, and the GF value was 0.318. The change in resistance was attributed to the deformation and movement of polyester fibers after tensile strain. The prepared strain sensor simultaneously achieved a broad working range of 60%, a fast response time of 166.67 ms, which is of almost frequency-independent reliability, and stable cycle durability over 1 000 cycles. In addition, human activity could be detected when the yarn sensor was connected directly to different body parts, such as the mouth, abdomen, fingers, and knees. In the example, the yarn sensor was fixed beside the mouth, and when the tester spoke different words such as "Jiangnan", "Zhongguo", "Shaxiang" and so on, the yarn sensor recorded a specific waveform signal for each vocalization because of the different amplitudes and patterns of the mouth opening and closing. The sensor recorded almost the same waveform when the same words were repeated. Connecting the yarn to the human abdomen the sensor detected the slight deformation caused by different shades of breathing state. All these verified that the PDA/PPy/polyester-coated spandex conductive yarn had good sensitivity.

Conclusion PDA/PPy/polyester-coated spandex conductive yarns have excellent stability, sensitivity, durability and repeatability to meet the requirements of wearable strain transducers. In addition, conductive yarns can be combined into woven, knitted and embroidery fabrics to monitor human joint activities in real time and have great potential in speech recognition, rehabilitation training, monitoring of respiratory. The outcome of the research demonstrate potentials in helping patients with joint injury and monitoring vital vegetative signs.

Key words: polydopamine, polypyrrole, polyester-coated spandex elastic yarn, conductive property, in-situ freezing interfacial polymerization, yarn strain sensor

中图分类号: 

  • TQ342.83

图1

PDA/PPy/涤纶包氨纶导电纱的制备过程"

图2

纱线扫描电镜照片"

图3

纱线EDS测试图"

图4

不同样品的红外光谱图"

图5

纱线的力学性能"

图6

前处理前后纱线的接触角"

图7

纱线拉伸前后的扫描电镜照片"

图8

吡咯与氯化铁不同量比下的纱线电阻值"

图9

纱线应变传感性能测试"

图10

10%拉伸应变下的1 000次拉伸-释放循环图"

图11

纱线应变传感器在可穿戴上的应用"

[1] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5):168-177.
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of conductive composite fiber wirelessly flexible strain sensor[J]. Journal of Textile Research, 2021, 42(5):168-177.
[2] LOND A, NATASCHA M V, NILS K P, et al. Electrically conducting fibres for e-textiles: an open playground for conjugated polymers and carbon nanomaterials[J]. Materials Science and Engineering: R:Reports, 2018, 126:1-29.
doi: 10.1016/j.mser.2018.03.001
[3] WAN Y, QIN N, WANG Y, et al. Sugar-templated conductive polyurethane-polypyrrole sponges for wide-range force sensing[J]. Chemical Engineering Journal, 2020. DOI:10.1016/j.cej.2019.123.103.
[4] MENG Q, CAI K, CHEN Y, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36:268-285.
doi: 10.1016/j.nanoen.2017.04.040
[5] LV J, ZHOU P, ZHANG L, et al. High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method[J]. Chemical Engineering Journal, 2019, 361:897-907.
doi: 10.1016/j.cej.2018.12.083
[6] HEBEISH A, FARAG S, SHARAF S, et al. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose com-posites[J]. Carbohydrate Polymers, 2016, 151:96-102.
doi: 10.1016/j.carbpol.2016.05.054
[7] QI G, HUANG L, WANG H. Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization[J]. Chemical Commu-nications, 2012, 48(66):8246-8248.
[8] ELELLA M H A, GODA E S, YOON K R, et al. Novel vapor polymerization for integrating flame retardant textile with multifunctional properties[J]. Composites Communications, 2021. DOI:10.1016/j.coco.2020.100614.
[9] 马飞祥, 丁晨, 凌忠文, 等. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1):1114-1125.
MA Feixiang, DING Chen, LING Zhongwen, et al. Research progress on preparation method and application of conductive fabric[J]. Materials Review, 2020, 34(1):1114-1125.
[10] ZHANG C, GONG L, XIANG L, et al. Deposition and adhesion of polydopamine on the surfaces of varying wettability[J]. ACS Applied Materials & Interfaces, 2017, 9(36):30943-30950.
[11] CHALMERS E, LEE H, ZHU C, et al. Increasing the conductivity and adhesion of polypyrrole hydrogels with electropolymerized polydopamine[J]. Chemistry of Materials, 2019, 32(1):234-244.
doi: 10.1021/acs.chemmater.9b03655
[12] LI Y, GAO Y, LAN L, et al. Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel[J]. NPJ Flexible Electronics, 2022, 6(1):1-11.
doi: 10.1038/s41528-022-00133-3
[13] HE Y, GUI Q, LIAO S, et al. Coiled fiber-shaped stretchable thermal sensors for wearable electronics[J]. Advanced Materials Technologies, 2016. DOI: 10.1002/admt.201600170.
[14] LI T, WANG X, JIANG S, et al. Study on electromechanical property of polypyrrole-coated strain sensors based on polyurethane and its hybrid covered yarns[J]. Sensors and Actuators A: Physical, 2020. DOI:10.1016/j.sna.2020.111958.
[15] LU D, LIAO S, WEI Q, et al. Comparative study of different carbon materials for the preparation of knitted fabric sensors[J]. Cellulose, 2022, 29(13):7431-7444.
doi: 10.1007/s10570-022-04722-3
[16] MA F, ZHANG D, ZHANG N, et al. Polydopamine-assisted deposition of polypyrrole on electrospun poly (vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes[J]. Chemical Engineering Journal, 2018, 354:432-444.
doi: 10.1016/j.cej.2018.08.048
[17] QI G, HUANG L, WANG H. Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization[J]. Chemical Comm-unications, 2012, 48(66):8246-8248.
[18] 俞杨销, 李枫, 王煜煜, 等. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10):16-23.
YU Yangdou, LI Feng, WANG Yuyu, et al. Preparation and properties of polypyrrole/silk fibroin conductive nanofiber films[J]. Journal of Textile Research, 2022, 43(10):16-23.
[19] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(6):114-119.
WANG Xiaofei, WAN Ailan, SHEN Xinyan. Preparation and strain sensing properties of polypyrrole conductive fabric modified bypolydopamine[J]. Journal of Textile Research, 2021, 42(6):114-119.
[20] 曹如川, 石小红, 李国龙, 等. 预处理对聚吡咯/羊毛复合导电纱线性能的影响[J]. 毛纺科技, 2022, 50(1):28-34.
CAO Ruchuan, SHI Xiaohong, LI Guolong, et al. Effect of pretreatment on properties of polypyrrole/wool composite Conductive Yar[J]. Wool Spinning Science and Technology, 2022, 50(1):28-34.
[1] 黄锦波, 邵灵达, 祝成炎. 炭化三维间隔棉织物的制备及其电加热性能[J]. 纺织学报, 2023, 44(04): 139-145.
[2] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[3] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[4] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[5] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[6] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[7] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[8] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[9] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[10] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
[11] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[12] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[13] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[14] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[15] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!