纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 96-105.doi: 10.13475/j.fzxb.20221002001
石路健1,2, 宋亚伟1,2, 谢汝义1,2, 高志超3, 房宽峻1,2()
SHI Lujian1,2, SONG Yawei1,2, XIE Ruyi1,2, GAO Zhichao3, FANG Kuanjun1,2()
摘要:
针对前处理中莱赛尔织物在浓碱、湿热和摩擦作用下的原纤化问题,分别探究了冷轧堆碱退浆精练、汽蒸碱退浆精练、酶退浆、漂白和丝光等工艺对原纤化现象的影响,分析了NaOH、H2O2等化学品及时间、温度等条件与原纤分裂过程的关系,优化莱赛尔机织物前处理条件和加工流程。结果表明:虽然NaOH可有效提升织物毛效,但当其质量浓度在20 g/L以上时,莱赛尔纤维开始原纤化,并且随着质量浓度的增加,原纤化逐渐增强;采用淀粉酶退浆工艺不仅能够获得满意的白度和毛效,而且防原纤化效果较好;H2O2漂白能够进一步提升织物的白度,但H2O2质量浓度较高时,织物表面出现原纤化;使用浓碱丝光会使莱赛尔剧烈溶胀,织物发生严重的原纤化;采用酶退浆和轻漂白的短流程工艺可有效防止原纤化的发生。
中图分类号:
[1] | 李婷, 李文瑞, 张晨曦, 等. 高速纺丝工艺下Lyocell纤维结构对其原纤化的影响[J]. 纺织学报, 2023, 44(2):11-18. |
LI Ting, LI Wenrui, ZHANG Chenxi, et al. Effect of Lyocell fiber structure on its fibrillation at high speed spinning process[J]. Journal of Textile Research, 2023, 44(2):11-18. | |
[2] | WHITE, PATRICK. Regenerated cellulose fibreslyocell: the production process and market development[M]. UK: Woodhead Publishing Limited, 2001:62-87. |
[3] | LOUBINOUX D, CHAUNIS S. An experimental approach to spinning new cellulose fibers with N-Methylmorpholine-Oxide as a solvent[J]. Textile Research Journal, 1987, 57(2):61-65. |
[4] | COLOM X, CARRILLO F. Crystallinity changes in lyocell and viscose-type fibres by caustic treatment[J]. European Polymer Journal, 2002, 38 (11):2225-2230. |
[5] | 黄伟, 程春祖, 张嘉煜, 等. 高原纤化Lyocell纤维的制备及其性能[J]. 纺织学报, 2021, 42(6):41-45. |
HUANG Wei, CHENG Chunzu, ZHANG Jiayu, et al. Preparation and properties of high fibrilized Lyocell fibers[J]. Journal of Textile Research, 2021, 42(6):41-45. | |
[6] | 黄伟, 程春祖, 张嘉煜, 等. Lyocell纤维的低原纤化控制方法研究进展[J]. 纤维素科学与技术, 2021, 29(2):7. |
HUANG Wei, CHENG Chunzu, ZHANG Jiayu, et al. Progress in low fibrillation control methods of Lyocell fibrils[J]. Cellulose Science and Technology, 2021, 29(2):7. | |
[7] | GOSWAMI P, BLACKBURN R S, TAYLOR J, et al. Dyeing behaviour of lyocell fabric: effect of fibrilla-tion[J]. Coloration Technology, 2007, 123(6): 387-393. |
[8] | 郭俊敏, 邵惠丽, 胡学超. 用湿摩擦值法评价Lyocell纤维原纤化程度[J]. 上海纺织科技, 2002(1):51-52. |
GUO Junmin, SHAO Huili, HU Xuechao. Lyocell fibrils were evaluated by the wet friction value method[J]. Shanghai Textile Technology, 2002(1): 51-52. | |
[9] | SHI Lujian, FANG Kuanjun, SONG Yawei, et al. Interaction enhancement of Lyocell cellulose chains for controlled fibrillation behavior with greener application in eco-textiles[J]. Industrial Crops & Products, 2023, 198: 116652. |
[10] | ZHANG W, OKUBAYASHI S, BECHTOLD T. Fibrillation tendency of cellulosic fibers: part 3: effects of alkali pretreatment of Lyocell fiber[J]. Carbohydrate Polymers, 2005, 59(2):173-179. |
[11] | 崔世强, 元伟, 王铁晗, 等. Lyocell纤维的抗原纤化研究进展[J]. 人造纤维, 2020, 50(6):11. |
CUI Shiqiang, YUAN Wei, WANG Tiehan, et al. Progress in antigen fibrillation of Lyocell fibers[J]. Man-Made Fiber, 2020, 50 (6): 11. | |
[12] | 唐人成, 赵建平. 降低Lyocell纤维原纤化程度的化学方法[J]. 印染, 2000, 26(8):46-51. |
TANG Rencheng, ZHAO Jianping. Chemical method to reduce the degree of fibrillation level of Lyocell fibrils[J]. China Dyeing & Finishing, 2000, 26 (8): 46-51. | |
[13] | SONG Yawei, FANG Kuanjun, BUKHARI Mohd Nadeem, et al. Improved inkjet printability of dye-based inks through enhancing the interaction of dye molecules and polymer nanospheres[J]. Journal of Molecular Liquids, 2021.DOI: 10.1016/j.molliq.2020.114702. |
[14] | SONG Yawei, HE Yuhao, CAO Zhenpeng, et al. Fabrication of antireflective coatings on cotton surface using dye-loaded nanoparticles for eco-friendly textile inkjet printing[J]. Progress in Organic Coatings, 2023. DOI: 10.1016/j.porgcoat.2023.107607. |
[15] | 阎克路. 染整工艺与原理:上册[M]. 北京: 中国纺织出版社, 2019:61-63. |
YAN Kelu. Dyeing and finishing process and principle: volume 1[M]. Beijing: China Textile & Apparel Press, 2019:61-63. | |
[16] | 唐人成. Lyocell纺织品染整加工技术[M]. 北京: 中国纺织出版社, 2001:101-103. |
TANG Rencheng. Lyocell textile dyeing and finishing processing technology[M]. Beijing: China Textile & Apparel Press, 2001:101-103. |
[1] | 刘骏韬, 孙婷, 涂虎, 胡敏, 张如全, 孙雷, 罗霞, 纪华. 全棉水刺非织造布的等离子体冷堆脱脂漂白工艺响应面法优化[J]. 纺织学报, 2023, 44(11): 132-141. |
[2] | 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45. |
[3] | 李婷, 李文瑞, 张晨曦, 迟克栋, 张明明, 刘海辉, 黄庆. 高速纺丝工艺下Lyocell纤维结构对其原纤化的影响[J]. 纺织学报, 2023, 44(02): 11-18. |
[4] | 沈忱思, 王曼, 徐晨烨, 王华平, 李方. 退浆废水中自由基引发的聚乙烯醇交联沉淀研究[J]. 纺织学报, 2021, 42(11): 117-123. |
[5] | 程佩, 傅佳佳, 王蕾, 张建祥, 张凯, 高卫东. 预处理对棉织物免烫整理效果的影响[J]. 纺织学报, 2021, 42(09): 126-130. |
[6] | 黄伟, 程春祖, 张嘉煜, 张晨曦, 程敏, 徐纪刚, 刘云崇. 高原纤化Lyocell纤维的制备及其性能[J]. 纺织学报, 2021, 42(06): 41-45. |
[7] | 武守营, 张琳萍, 徐红, 钟毅, 毛志平. 金属配合物催化棉织物低温漂白研究进展[J]. 纺织学报, 2021, 42(03): 27-35. |
[8] | 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8. |
[9] | 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13. |
[10] | 向忠, 王宇航, 吴金波, 钱淼, 胡旭东. 过氧化氢检测方法研究进展[J]. 纺织学报, 2020, 41(10): 197-204. |
[11] | 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-101. |
[12] | 尉腾祥, 李敏, 彭虹云, 付少海. 纬平针棉针织物平幅丝光条件与其线圈结构的关系[J]. 纺织学报, 2020, 41(04): 98-105. |
[13] | 张悦, 胡丹玲, 任金娜, 李青. 棉织物低温近中性一浴一步法练漂[J]. 纺织学报, 2019, 40(09): 83-90. |
[14] | 张帆, 张儒, 周文常, 周辉, 汪南方. 金属铜配合物催化双氧水用于棉针织物的低温漂白[J]. 纺织学报, 2019, 40(08): 101-108. |
[15] | 唐文君, 彭明华, 向中林, 邵冬燕, 倪佳东, 许长海. 应用阳离子漂白活化剂的棉织物快速轧蒸漂白工艺[J]. 纺织学报, 2019, 40(02): 125-129. |
|