纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 43-50.doi: 10.13475/j.fzxb.20221002501

• 纤维材料 • 上一篇    下一篇

全纤维电容式传感器的结构设计及其性能

陈莹(), 沈娜弟, 张露   

  1. 北京服装学院 材料设计与工程学院, 北京 100029
  • 收稿日期:2023-01-07 修回日期:2024-01-16 出版日期:2024-05-15 发布日期:2024-05-31
  • 作者简介:陈莹(1984—),女,副教授,博士。主要研究方向为功能纺织品开发。E-mail:20150009@bift.edu.cn
  • 基金资助:
    北京服装学院青年骨干教师成长支持计划项目(BIFTQG201812);北京服装学院科学研究项目(2020A-09)

Structure design and performance of fiber capacitive sensor

CHEN Ying(), SHEN Nadi, ZHANG Lu   

  1. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2023-01-07 Revised:2024-01-16 Published:2024-05-15 Online:2024-05-31

摘要:

由于受柔性电容式传感器介电层弹性模量的限制,目前电容器的性能如灵敏度等难以达到应用要求,为提高传感器的传感性能,以聚吡咯复合蚕丝织物作为织物电极,羊毛纤维集合体作为介电层构建全纤维的电容式压力传感器,对电极的织物结构和纤维集合体高度进行优化分析;对传感器的电学及传感性能进行测试,并进行了应用探索。结果表明:面密度为69 g/m2素绉缎聚吡咯复合织物方阻最小,为42 Ω/□;纤维电容器以素绉缎聚吡咯复合织物作为电极,羊毛纤维集合体为介电层,且高度为1.4 cm时传感性能最优,在频率为10 kHz、电容最高为66 pF、压力为0~5 N范围内灵敏度最高为1.08 N-1。该电容式传感器具有良好的稳定性,有望应用于肢体运动监测与公共场合安全监测中。

关键词: 电容, 织物传感器, 聚吡咯, 纤维介电层, 织物电极

Abstract:

Objective Due to the limitation of the Young's modulus of the dielectric layer of the current flexible capacitive sensor, the performance of the capacitor, such as sensitivity, cannot meet the requirements, so material selection and structural design of the electrodes and dielectric layers of fabric sensor are required to improve the sensing performance. In this paper, a series of polypyrrole composited silk fabrics were used as fabric electrodes, and wool fiber aggregates were used as dielectric layers to construct an all-fiber capacitive pressure sensor.

Methods Based on the calculation formula of effective dielectric constant, the pores in the fabric electrode and the air dielectric layer have a positive impact on the sensitivity of the sensor. Therefore, the polypyrrole composite silk fabrics were used as the electrode, and fiber and air aggregates were used as dielectric layers to study the effects of different fabric structures, different types and contents of fibers in dielectric layers on the performance of capacitive sensors. Application explorations of human motion and safety detection were also done.

Results The square resistance of polypyrrole composited crepe satin fabric (69 g/m2) was the smallest, which was 42 Ω/□. This is because the density of crepe satin silk is the largest, the diameters of yarns are also larger, the warp yarn is twisted, and the weft yarn is not twisted. The sensitivities of cotton and wool fiber capacitors were better than that of acrylic fiber. Because wool fiber has better elasticity and uses less, so wool fiber is finally selected as the dielectric layer. When the height of the dielectric layer is higher, the wool content is larger, the dielectric constant is larger, and the capacitance value is larger, but when the height is too high, the air content decreases, and the deformation ability of the overall dielectric layer decreases, thereby reducing the capacitance change rate, so he height of 1.4 cm as the dielectric layer had the best performance. The fabric 5# (69 g/m2 plain crepe satin) has the highest capacitance of 66 pF when it is used as the electrode. This is probably because the porosity of the fabric 5# is the smallest, the effective area of the electrodes is the largest, and the capacitance is the highest. With the increase of applied pressure, the capacitance increases and the capacitance change rate also increases. The highest sensitivity was 1.08 N-1 at 0.098 N. In the process of applying pressure, the structure of the fabric electrode will change, which will cause the change of the effective relative area and the air content in the fabric electrode, which will also affect the dielectric constant. When the pressure is greater than 1.96 N, the capacitance changes rate of the fabric 5# is the largest, and its sensitivity is the best, so the fabric 5# is used as the capacitance sensor electrode. The capacitive sensor has good stability, and is expected to be used in limb movement monitoring and safety monitoring in public places.

Conclusion 1) The influence of fabric structure on electrical properties can be concluded as: the greater the fabric density, the denser the yarn arrangement, the more conductive paths, and the smaller the resistance; the fabric electrode not only affects the effective relative area, but also affect the dielectric constant, which in turn affects the overall capacitance. The effect pattern needs further study. 2) The optimized assembly conditions of the capacitive sensor are the wool fiber and air aggregates with a height of 1.4 cm as the dielectric layer, and the electrode is the polypyrrole composite fabric of crepe satin (69 g/m2). The existence of air in the dielectric layer has a great influence on the height of the dielectric layer and the change of the dielectric constant during the compression process; the structure of the electrode fabric will affect the dielectric constant and effective relative area during the compression process. The above factors will ultimately affect the sensitivity of the sensor. Therefore, the next step will be to further optimize the structure of the dielectric layer and fiber composition to find a quantitative relationship, thereby improving the sensitivity of the sensor. 3) Application studies have shown that the capacitive sensor has the ability to sense the bending changes of fingers and the proximity of metal objects and fingers within 10cm, which is expected to apply this multifunctional, low-cost electronic fabric sensor to artificial skin, wearable health detection and contactless detection equipment superior.

Key words: conductivity, fabric sensor, polypyrrole, fiber dielectric layer, fabric electrode

中图分类号: 

  • TS101.4

表1

织物规格参数"

样品
样品
名称
面密度/
(g·m-2)
密度/(根·cm-1) 线密度/tex 织物
组织
经密 纬密 经纱 纬纱
1# 蚕丝绉 22 50 50 6.54 6.54 平纹
2# 蚕丝绡 24 48 67 5.00 5.00 平纹
3# 电力纺 34 55 71 10.21 8.27 平纹
4# 双绉 52 50 75 20.01 6.54 平纹
5# 砂洗素绉缎 69 60 85 14.70 5.00 缎纹

图1

手指靠近电容式传感器测试图"

图2

织物的光学显微镜照片(×40)"

图3

频率-电容曲线"

表2

不同纤维介电层的电容"

介电层使用的纤维 电容/pF
腈纶短纤维 885
51
羊毛 52

图4

具有不同纤维介电层的传感器的传感性能"

表3

介电层高度-电容值"

介电层高度/cm 电容/pF
0.1 4.1
0.5 26.1
0.8 53.1
1.4 52.0
1.9 835.0

图5

不同介电层高度下的压力-电容变化率曲线"

表4

具有不同织物电极的电容传感器的电容值"

织物编号 电容/pF
1# 34
2# 54
3# 51
4# 52
5# 66

图6

具有不同电极的电容传感器传感性能"

图7

电容式传感器稳定性及重复性曲线"

图8

随手指运动的电容变化率曲线"

图9

金属镊子周期性靠近传感器时电容-次数变化曲线"

图10

手指周期性靠近传感器时电容-次数变化曲线"

[1] LEE J, KWON H, SEO S J, et al, Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advance Material, 2015, 27: 2433-2439.
[2] LI R, ZHOU Q, BI Y, et al. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches[J]. Sensors and Actuators A: Physical, 2021(321):1-5.
[3] 肖渊, 李红英, 李倩, 等. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(5):79-83.
XIAO Yuan, LI Hongying, LI Qian, et al. Fabrication of flexible pressure sensor with cotton fabric/polydimethylsiloxane composite dielectric layer[J]. Journal of Textile Research, 2021, 42(5):79-83.
[4] XU F, LI X, SHI Y, et al. Recent developments for flexible pressure sensors: a review[J]. Micromachines, 2018.DOI: 10.3390/mi9110580.
[5] 田玉玉, 何韧, 吴菊英, 等. 电容式柔性压力传感器的性能优化原理及研究进展[J]. 材料导报, 2023, 37(16): 1-14.
TIAN Yuyu, HE Ren, WU Juying, et al. Capacitive flexible pressure sensor: optimization principle and research progress[J]. Materials Reports, 2023, 37(16): 1-14.
[6] 马龙全. 基于微阵列电极和复合材料介电层的柔性压力传感器的制备及应用[D]. 深圳: 深圳大学, 2019: 28-40.
MA Longquan. Fabrication and application of flexible pressure sensor based on microarray electrodes and composite dielectric layer[D]. Shenzhen: Shenzhen University, 2019: 28-40.
[7] 佑晓露. 基于纳米纤维的柔性电容式传感器的构建与研究[D]. 郑州: 中原工学院, 2019:5-30.
YOU XiaoLu. Construction and research of flexible capacitive sensor based on nanofibers[D]. Zhengzhou: Zhongyuan Institute of Technology, 2019:5-30.
[8] 孙婉, 缪旭红, 王晓雷, 等. 基于经编间隔织物的压力电容传感器特性[J]. 纺织学报, 2019, 40(2):94-99.
SUN Wan, MIAO Xuhong, WANG Xiaolei, et al. Characteristics of capacitive pressure sensor based on warp-knitted spacer fabric[J]. Journal of Textile Research, 2019, 40(2):94-99.
[9] 徐乐平. 蚕丝织物基柔性应变传感器的制备与研究[D]. 上海: 东华大学, 2020:20-50.
XU Leping. Fabrication and research of silk fabric-based flexible strain sensor[D]. Shanghai: Donghua University, 2020:10-30.
[10] 丁翔. 磺酸基酞菁铜/聚吡咯柔性复合织物气敏传感器的研究[D]. 天津, 天津工业大学, 2018: 5-20.
DING Xiang. Study on sulfonic copper phthalocya nine/polypyrrole flexible composite fabric gas sensor[D]. Tianjin: Tiangong University, 2018:5-20.
[11] 于佳, 辛斌杰, 卓婷婷, 等. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(1):112-117.
YU Jia, XIN Binjie, ZHUO Tingting, et al. Preparation and characterization of highly conductive copper/polypyrrole coated wool fabric[J]. Journal of Textile Research, 2021, 42(1): 112-117.
[12] 田佳鑫. 金属有机框架/聚吡咯复合织物电极材料的制备及应用研究[D]. 武汉: 武汉纺织大学, 2019:1-20.
TIAN Jiaxin. Preparation and application of metal organic framework/polypyrrole composite fabric electrode material[D]. Wuhan: Wuhan Textile University, 2019:1-20.
[13] ATALAY O, ATALAY A, GAFFORD J, et al. A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer[J]. Advanced Materials Technologies, 2017.DOI: 10.1002/admt.201700237.
[1] 王博, 刘美亚, 陈明娜, 宋孜灿, 夏明, 李沐芳, 王栋. 聚吡咯/氨纶长丝的应变传感性能与应用[J]. 纺织学报, 2024, 45(02): 119-125.
[2] 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133.
[3] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[4] 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215.
[5] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[6] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[7] 万爱兰, 沈新燕, 王晓晓, 赵树强. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(01): 156-163.
[8] 陆浩杰, 李曼丽, 金恩琪, 张宏伟, 周赳. 基于弧形电容器的浆纱回潮率在线测量[J]. 纺织学报, 2023, 44(01): 201-208.
[9] 李晓燕, 张智慧, 姚继明. 基于印刷技术制备柔性微型电容器的研究进展[J]. 纺织学报, 2022, 43(12): 197-202.
[10] 王洪杰, 姚岚, 王赫, 张仲. 医用口罩熔喷非织造布电极的制备及其电化学性能[J]. 纺织学报, 2022, 43(12): 22-28.
[11] 娄辉清, 朱斐超, 李磊磊, 丁会龙, 普丹丹, 王相飞. 碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能[J]. 纺织学报, 2022, 43(11): 35-40.
[12] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[13] 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(07): 47-54.
[14] 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154.
[15] 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!