纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 19-26.doi: 10.13475/j.fzxb.20221003701

• 纤维材料 • 上一篇    下一篇

壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能

陈锦苗1,2,3, 李纪伟1,2,3, 陈萌1,2,3, 宁新1,2,3, 崔爱华4, 王娜1,2,3()   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 非织造材料与产业用纺织品创新研究院, 山东 青岛 266071
    3.山东省特型非织造材料工程研究中心, 山东 青岛 266071
    4.潍坊盈珂海洋生物材料有限公司, 山东 潍坊 261000
  • 收稿日期:2023-01-18 修回日期:2024-01-23 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 王娜(1985—),女,副教授,博士。主要研究方向为功能纳米纤维的制备及其应用。E-mail: wanglinayi@163.com。
  • 作者简介:陈锦苗(1998—),女,硕士生。主要研究方向为生物医用纺织品。
  • 基金资助:
    中国博士后科学基金项目(2022M711735);国家自然科学基金青年基金项目(52203060)

Preparation and properties of chitosan micro-nanofiber composite antibacterial air filter material

CHEN Jinmiao1,2,3, LI Jiwei1,2,3, CHEN Meng1,2,3, NING Xin1,2,3, CUI Aihua4, WANG Na1,2,3()   

  1. 1. College of Textile & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao, Shandong 266071, China
    3. Shangdong Center for Engineered Nonwovens, Qingdao, Shandong 266071, China
    4. Weifang Young Marine Biomaterials Co., Ltd., Weifang, Shandong 261000, China
  • Received:2023-01-18 Revised:2024-01-23 Published:2024-05-15 Online:2024-05-31

摘要:

为制备一种绿色环保的抗菌空气过滤材料,在壳聚糖水刺非织造布(CS)的表面静电纺丝一层壳聚糖/聚氧化乙烯(CHI/PEO)纳米纤维膜,得到壳聚糖微纳米纤维复合空气滤材(CHI/PEO-CS)。对制备的CHI/PEO-CS复合膜的微观形貌、力学性能、孔径分布、透气性、过滤性能以及抗菌性能进行了系统研究。结果表明:CHI/PEO纤维直径随着PEO质量分数的增加而增大,当PEO质量分数为0.45%时,CHI/PEO纤维的成纤率最好,对应的纳米纤维直径为146 nm;CHI/PEO-CS对300 nm NaCl气溶胶颗粒的过滤效率可达99.56%,对应压降为63 Pa;当壳聚糖水刺布表面静电纺纳米纤维膜后,CHI/PEO-CS在改善其过滤性能的基础上依旧保持原水刺布较高的强力,且具有较好的透气性能(246.2 mm/s);此外,CHI/PEO-CS对大肠杆菌和金黄色葡萄球菌的拦截率分别为99.97%和99.88%,显著高于纯CS水刺布。

关键词: 壳聚糖水刺非织造布, 纳米纤维, 微纳复合, 抗菌性能, 空气过滤

Abstract:

Objective In recent years, the rapid development of the economy has been accompanied by increased air pollution, leading to frequent hazy weather conditions. Consequently, particulate matter has emerged as the primary pollutant in outdoor air pollution in our country, posing serious health risks to people. Electrospun nanofiber membranes show promise in air filtration due to their small diameter, three-dimensional porous structure, and large surface area. However, the low strength of these nanofiber membranes limits their large-scale industrial application. In this study, we employ chitosan, known for its antibacterial, biodegradable, and biocompatible properties, to prepare an environmentally friendly antibacterial air filter.

Methods The raw materials used were chitosan spunlaced nonwovens (CS), chitosan (CHI), and polyethylene oxide (PEO). By electrospinning technology, a layer of chitosan/polyethylene oxide (CHI/PEO) nanofibers membrane was electrospun on the surface of CS, and then a composite air filter (CHI/PEO-CS) was obtained. Then, the micro-morphology, fiber diameter, pore size distribution, and air permeability of CHI/PEO nanofiber membranes with different PEO concentrations were measured. Finally, the antibacterial properties of the CHI/PEO-CS composite membrane were studied by testing the filtration performance of the composite membrane and selecting the appropriate PEO concentration.

Results The average fiber diameter of CHI/PEO fibrous membranes gradually extends from 111 nm to 198 nm with incensing the concentration of PEO. And the average fiber diameter of the CS spunlaced nonwoven fabric is relatively large and about 11.5 μm. With the combination of CHI/PEO nanofibers and CS spunlaced nonwoven fabric, an air filtration membrane was constructed, while the electron microscopy images demonstrate a good adherence between CHI/PEO nanofibers and the CS substrate. The combination of CHI/PEO with CS is solely a physical composite, indicating that there are no chemical reactions between the components. When the concentration of PEO varies between 0.3% and 0.6%, the strength of CHI/PEO-CS remains relatively constant, indicating that the electrospun CHI/PEO nanofibers exert a minimal impact on the mechanical strength of the spunlaced nonwoven fabric. This observation suggests that CS significantly enhances the mechanical properties of CHI/PEO-CS.The pore size distribution of the CHI/PEO-CS composite membrane shows two distinct peaks. The first peak corresponds to the CHI/PEO fiber membrane, while the second represents CS, and the change in pore size follows the trend in fiber diameter. With the increase of PEO concentration, the air permeability was improved accordingly, although the filtration efficiency initially increases and then decreases. Based on these results, we chose a PEO concentration of 0.45% with the highest quality factor for further study. At this concentration, the filtration efficiency of CHI/PEO-CS for 300 nm NaCl aerosol particles significantly increased from 1.6% (in original CS) to 99.56%, with a pressure drop of 63 Pa. Furthermore, after multiple cycles and prolonged testing, the filtration performance of CHI/PEO-CS consistently remained above 99%. Additionally, the interception ratios for E.coli and S.aureus were 99.97% and 99.88%, respectively, significantly surpassing that of pure CS, providing enhanced protection in practical applications.

Conclusion In order to prepare a kind of environmentally friendly antibacterial air filtration material, a layer of chitosan/polyethylene oxide (CHI/PEO) nanofibers membrane was electrospun on the surface of chitosan spunlaced nonwovens (CS), it was found that the CHI/PEO-CS composite membrane with PEO concentration of 0.45% had better comprehensive properties, including fiber morphology, air permeability (246.2 mm/s), and mechanical properties (2.26 MPa), excellent antibacterial performance (interception ratio >99.88%), high filtration efficiency (99.56%) and lower pressure drop (63 Pa). Therefore, a kind of composite filter material composed entirely of chitosan, was successfully prepared which has both excellent strength of micro-fiber good filtration performance of nano-fiber, and good antibacterial performance. This work provides a new idea for the research and development of functional air filtration materials.

Key words: chitosan spunlaced nonwoven, nanofiber, micro-nano composite, antibacterial, air filtration

中图分类号: 

  • TS171

图1

不同质量分数PEO的CHI/PEO-CS的扫描电镜照片和纤维直径分布图"

图2

CS、CHI、PEO及CHI/PEO-CS的红外光谱图"

图3

不同质量分数PEO的CHI/PEO-CS的力学性能"

图4

不同PEO 质量分数CHI/PEO-CS的孔径分布及透气性"

图5

不同质量分数PEO的CHI/PEO-CS过滤性能"

图6

2*过滤性能的稳定性"

图7

CS和 CHI/PEO-CS的滤菌性能"

[1] LU T, CUI J, QU Q, et al. Multistructured electrospun nanofibers for air filtration: a review[J]. ACS Applied Materials & Interfaces, 2021, 13 (20): 23293-23313.
[2] COLEMAN N C, EZZATI M, MARSHALL J D, et al. Fine particulate matter air pollution and mortality risk among US cancer patients and survivors[J]. JNCI cancer spectrum, 2021.DOI: 10.1093/jncics/pkab001.
[3] LAVIGNE É, TALARICO R, VAN Donkelaar A, et al. Fine particulate matter concentration and composition and the incidence of childhood asthma[J]. Environment international, 2021, 152: 1-8.
[4] LIANG F, LIU F, HUANG K, et al. Long-term exposure to fine particulate matter and cardiovascular disease in China[J]. Journal of the American College of Cardiology, 2020, 75 (7): 707-717.
[5] 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41 (6): 174-182.
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41 (6): 174-182.
[6] LYU C, ZHAO P, XIE J, et al. Electrospinning of nanofibrous membrane and its applications in air filtration: a review[J]. Nanomaterials, 2021, 11 (6): 1-6.
[7] KUMAR A, VIMAL A, KUMAR A. Why chitosan? from properties to perspective of mucosal drug delivery[J]. International Journal of Biological Macromolecules, 2016, 91: 615-622.
doi: 10.1016/j.ijbiomac.2016.05.054 pmid: 27196368
[8] CAMPA-SIQUEIROS P I, MADERA-SANTANA T J, AYALA-ZAVALA J F, et al. Co-electrospun nanofibers of gelatin and chitosan-polyvinyl alcohol-eugenol for wound dressing applications[J]. Polymer Bulletin, 2023, 80 (4): 3611-3632.
[9] MORIN-CRINI N, LICHTFOUSE E, FOURMENTIN M, et al. Removal of emerging contaminants from wastewater using advanced treatments: a review[J]. Environmental Chemistry Letters, 2022, 20 (2): 1333-1375.
[10] ANTABY E, KLINKHAMMER K, SABANTINA L. Electrospinning of chitosan for antibacterial applications-current trends[J]. Applied Sciences, 2021, 11 (24): 1-7.
[11] WANG L, ZHANG C, GAO F, et al. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration[J]. RSC Advances, 2016, 6 (107): 105988-105995.
[12] LOU C W, LIN M C, HUANG C H, et al. Preparation of needleless electrospinning polyvinyl alcohol/water-soluble chitosan nanofibrous membranes: antibacterial property and filter efficiency[J]. Polymers, 2022. DOI:10.3390/polym14051054.
[13] 万雨彩, 刘迎, 王旭, 等. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41 (4): 15-20.
WAN Yucai, LIU Ying, WANG Xu, et al. Structure and property of poly(vinyl alcohol-co-ethylene) nanofiber /polypropylene microfiber scaffold: a composite air filter with high filtration performance[J]. Journal of Textile Research, 2020, 41 (4): 15-20.
[14] WANG J N, MA L C, LI L, et al. PES microsphere/fiber low resistance composite air filter membranes prepared by electrostatic spinning[J]. Acta Polymerica Sinica, 2014, (11): 1479-1485.
[15] WANG W, CHEN C, FU X. Glycation mechanism of lactoferrin-chitosan oligosaccharide conjugates with improved antioxidant activity revealed by high-resolution mass spectroscopy[J]. Food & function, 2020, 11 (12): 10886-10895.
[16] 熊平. 多尺度壳聚糖纳米纤维膜的制备及其吸附过滤性能研究[D]. 天津: 天津工业大学, 2021:1-45.
XIONG Ping. Preparation of multi-scale chitosan nanofiber membrane and its adsorption and filtration properties[D]. Tianjin: Tiangong University, 2021:1-45.
[17] WANG H, BAO Y, YANG X, et al. Study on filtration performance of PVDF/PUL composite air filtration membrane based on far-field electrospinning[J]. Polymers, 2022, 14 (16): 1-7.
[18] 朱金铭, 钱建华, 曹晨, 等. 聚醚砜非织造布复合膜的空气过滤性能[J]. 纺织学报, 2018, 39 (7): 55-62.
ZHU Jinming, QIAN Jianhua, CAO Chen, et al. Air filtration performance of polyether sulfone nonwoven. composite membranes[J]. Journal of Textile Research, 2018, 39 (7): 55-62.
[19] ZHANG B, ZHANG Z G, YAN X, et al. Chitosan nanostructures by in situ electrospinning for high-efficiency PM2.5 capture[J]. Nanoscale, 2017, 9 (12): 4154-4161.
doi: 10.1039/c6nr09525a pmid: 28282101
[1] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[2] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
[3] 王新庆, 季东圣, 李舒畅, 杨晨, 张宗宇, 刘实诚, 王航, 田明伟. 包载型聚丙烯腈/SiO2气凝胶复合纳米纤维制备及其隔热性能[J]. 纺织学报, 2024, 45(05): 35-42.
[4] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[5] 李朝威, 成悦, 苏新, 陈鹏飞, 李大伟, 付译鋆. 聚偏氟乙烯纳米纤维的结构调控及其在生物医学领域应用研究进展[J]. 纺织学报, 2024, 45(04): 229-237.
[6] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[7] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[8] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[9] 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10.
[10] 郑晓頔, 盛平厚, 蒋佳岑, 李睿, 焦红娟, 邱志成. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(03): 19-27.
[11] 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27.
[12] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[13] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[14] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
[15] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!