纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 65-73.doi: 10.13475/j.fzxb.20221004001
DING Caihong(), GU Xin, LU Chenyu
摘要:
为解决六角形三维编织血管支架的编织工艺复杂、开发周期长的问题,提出了基于MatLab编程的支架三维虚拟编织方法,以快速完成编织工艺开发。首先,基于六角形编织机底盘的结构特点,对底盘单元进行坐标数值化,从而可将支架编织的工艺和工序转换为不同时刻下携纱器在底盘上的XY平面坐标和运动信息以及纱线在芯棒上的高度坐标z值,并应用数值计算方法进行连接和拟合,建立纱线空间轨迹的数学模型,得到虚拟支架的三维基本形态。然后,将编织支架的三维形态展开为二维形态,分析二维平铺形态下单向支架沿螺旋方向缠绕的特点,应用线性方程组求解纱线的交织点坐标,并通过层内和层间的纱线交织关系判断得到各交织点的交织类型。最后,通过方程修正得到具有六角形编织特征的纱线波动方程,进一步建立了具有纱线立体交织特征的虚拟支架实体化数学模型。经不同编织工艺的支架虚拟仿真实验,将虚拟支架与其实物进行比较发现,虚拟支架均能准确直观地表达实物的几何特征和交织特征。由此验证了虚拟仿真建模的正确性,有利于六角形三维编织工艺的快速开发。
中图分类号:
[1] | 李芳, 吴可通, 赵珺, 等. 血管支架及其在动脉瘤治疗中的发展趋势[J]. 中国组织工程研究, 2021, 25(34):5561-5569. |
LI Fang, WU Ketong, ZHAO Jun, et al. Advances of endovascular stent and its treatment for aneurysms[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(34):5561-5569. | |
[2] | 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(9):191-200. |
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020, 41(9):191-200. | |
[3] | ZHENG Q, MOZAFARI H, LI Z, et al. Mechanical characterization of braided self-expanding stents: impact of design parameters[J]. Journal of Mechanics in Medicine and Biology, 2019. DOI:10.1142/s0219519419500386. |
[4] | 李政宁, 陈革, KO F. 三维编织工艺及机械的研究现状与趋势[J]. 玻璃钢/复合材料, 2018(5):109-115. |
LI Zhengning, CHEN Ge, KO F. The development and tendency of 3D braiding technology and machinery[J]. Fiber Reinforced Plastics/Composites, 2018 (5):109-115. | |
[5] |
BOUILLOT P, BRINA O, OUARED R, et al. Geometrical deployment for braided stent[J]. Medical Image Analysis, 2016, 30:85-94.
doi: S1361-8415(16)00013-X pmid: 26891065 |
[6] | 付文宇, 李立新, 乔爱科. 编织支架弯曲变形时扁平现象的数值模拟研究[J]. 北京生物医学工程, 2020, 39(5):455-461. |
FU Wenyu, LI Lixin, QIAO Aike. Numerical simulation of flattening phenomenon in braided stent bending deformation[J]. Beijing Biomedical Engineering, 2020, 39(5):455-461. | |
[7] | 吕海辰, 李政宁, 陈革, 等. 六角形三维编织物结构的 MatLab仿真及优化[J]. 东华大学学报(自然科学版), 2020, 46(1) :23-28,59. |
LÜ Haichen, LI Zhengning, CHEN Ge, et al. Model simulation and optimization of hexagonal three dimensional braiding fabric based on MatLab[J]. Journal of Donghua University (Natural Science), 2020, 46(1):23-28,59. | |
[8] |
MEI H, HAN Z, LIANG S, et al. Process modelling of 3D hexagonal braids[J]. Composite Structures, 2020, 6: 1-19.
doi: 10.1016/0263-8223(86)90065-6 |
[9] | 杨鑫, 邵慧奇, 蒋金华, 等. 六角形编织物的微观结构模拟[J]. 纺织学报, 2021, 42(4):85-92. |
YANG Xin, SHAO Huiqi, JIANG Jinhua, et al. Meso-structure simulation of hexagonal braiding preforms[J]. Journal of Textile Research, 2021, 42(4):85-92. | |
[10] | SCHREIBER F. Three-dimensional hexagonal braiding[M]. Amsterdam:Elsevier, 2016: 79-88. |
[11] | EMONTS C, GRIGAT N, MERKORD F, et al. Innovation in 3D braiding technology and its applications[J]. Textiles, 2021(2):185-205. |
[12] |
RAWAL A, GUPTA S, SARASWAT H, et al. Geometrical modeling of near-net shape braided preforms[J]. Textile Research Journal, 2014, 85(10): 1055-1064.
doi: 10.1177/0040517514559587 |
[13] | KYOSEV Y, GLEANER P. Extended horn gears in 3D maypole braiding: theoretical analysis, gear arrangement and prediction of the floating length[J]. Journal of Textiles and Fibrous Materials, 2018(1): 1-7. |
[14] |
ALPYILDIZ T. 3D geometrical modelling of tubular braids[J]. Textile Research Journal, 2012, 82(5):443-453.
doi: 10.1177/0040517511427969 |
[15] | 李政宁. 六角形编织立体织物成形原理及其复合材料性能研究[D]. 上海: 东华大学, 2019:1-53. |
LI Zhengning. Study on forming principles 3D hexagonal braided fabric and its composite properties[D]. Shanghai: Donghua University, 2019:1-53. |
[1] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[2] | 吴斌伟;朱海霖;张乐伟;冯新星;陈建勇. 静电纺丝素/聚丁二酸丁二醇血管材料的结构与性能[J]. 纺织学报, 2011, 32(4): 1-6. |
|